

CakePHP 1.3 Application
Development Cookbook

Over 60 great recipes for developing, maintaining,
and deploying web applications

Mariano Iglesias

 BIRMINGHAM - MUMBAI

CakePHP 1.3 Application Development
Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1030311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-92-6

www.packtpub.com

Cover Image by Javier Barria (Javier.Barria@cwpanama.com)

Credits

Author
Mariano Iglesias

Reviewers
Nick Baker

Sam Sherlock

Jeff Smith

Mark Story

Acquisition Editor
Sarah Cullington

Development Editor
Reshma Sundaresan

Technical Editor
Gauri Iyer

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Leena Purkait

Proofreader
Glinert Stevens

Graphics
Nilesh R. Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Mariano Iglesias started programming at the early age of 11, moving through a variety
of programming languages, and becoming a proficient PHP developer of over 10 years.

Throughout the years, he collaborated on several open source projects, mostly in C++,
Java, Python, and PHP. He became a CakePHP and a Lithium contributor, frameworks
that are among the most popular web development frameworks.

He divides his time between client work and his current open source projects, which
are built with C++, Python, and PHP.

There are no words that can express my gratitude for the CakePHP
community, and the CakePHP core team. Their passion and commitment
to build one of the best PHP frameworks is to be cherished. Their sincere
dedication to sharing knowledge cannot be praised enough.

This book has also benefited from the best team of technical reviewers a
CakePHP book could possibly have. Here is my aknowledgement for Jeffrey
Smith, John Anderson, Mark Story, Nick Baker, Paul Gardner, and Sam
Sherlock. You not only helped me find flaws in my code, but also suggested
some impressive improvements. The CakePHP community should be proud
to count you as members.

Everyone on the Packt Publishing team has not only accommodated my
schedule, but helped me throughout the writing of this book. They are truly
a joy to work with, and no writer should walk away from the opportunity of
writing for Packt. Thank you guys for your support and trust.

About the Reviewers

Nick Baker, owner of WebTechNick LLC and Senior IT/Developer at healthyhearing.
com. Nick is a gifted problem solver who sincerely enjoys all aspects of programming
and design, from development to implementation - excelling at programming, testing,
documentation, and training in multiple platforms. Nick has worked over 13 years
focusing on web development and is an expert in multiple web 2.0 frameworks such
as CakePHP and Ruby on Rails. Prior to working with Allied Health LLC, Nick studied
Computer Science at the University of New Mexico and helped build the Natural Heritage
of New Mexico website - a site used by research scientists to store/retrieve data and map
the distribution of endangered plants and animals in the Southwest. UNM holds a patent
for multi-layer vector searches in GIS as a direct result of Nick's work.

Sam Sherlock is a web developer who is inspired by the innovations of modern web
technology and loves to see them put to use in creative ways that benefit the masses. He
has been a keen, early adopter of many popular Open source projects (jQuery, SWFObject.
and of course, CakePHP).

He is a co-creator of a CakePHP plugin named BakingPlate, soon to be available via
Github. One day he hopes to use modern web technologies to create mathematical
teaching guides that are accessible and enjoyable to all.

Jeff Smith grew up in a small town in Indiana named Odon, but has lived in Indianapolis,
Indiana (USA) for the last 15 years. Web programming is his hobby, but he plans to make
it his career later. He enjoys working with many established frameworks, as well as trying
out new ones. He is currently working with Drupal, Joomla!, and Ruby on Rails for various
small projects. He is looking forward to learning about Non-SQL databases, Lift, and
Scala.

I would like to thank Packt for giving me an opportunity to help out on this
book, the Object-oriented PHP book I am working on, and I look forward to
helping out on any books I can in the future.

Mark Story graduated from the Ontario College of Art and Design with a degree in
Illustration. Art being a difficult industry to break into, he tried his hand at programming.
This grew into a skill and passion that allowed him to become the lead developer of the
CakePHP framework and secure a position with FreshBooks as a front-end developer.
Mark's design background and skills in development produce a unique combination of
attention to detail, technical expertise, and, above all, patience. Leading the CakePHP
project as the primary contributor for the past two years, Mark contributes to several
open-source projects in his spare time.

I'd like to thank my wonderful wife for putting up with all the late nights and
my incessant talking about things she doesn't really understand. I'd also like
to thank the fantastic CakePHP community CakePHP without you, this book
would never have been possible.

www.PacktPub.com

Support files, eBooks, discount offers, and
more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy & paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

I dedicate this book to:

My parents, who have embraced the passion of a restless kid when he decided to
become a programmer, and taught him that family is the most important thing.

My brothers (Lorena, Nicolas, Pedro, Ignacio) for accomodating the kid that would
not play with them so he could spend countless hours on the computer (or in a

notebook when a computer wasn't available). Pedro: thank you for teaching me what
life is all about, I miss you every day.

My wife Claudia, who is my soulmate and a partner for life; who has taught me the
meaning of love; whose happiness has become my most important objective; and
without whom, nothing, nothing at all would be possible. You are the reason why I

am, my dear princess.

Table of Contents
Preface	 1
Chapter 1: Authentication	 7

Introduction	 7
Setting up a basic authentication system	 8
Using and configuring the Auth component	 12
Allowing logins with username or e-mail	 16
Saving the user details after login	 19
Getting the current user's information	 21
Using prefixes for role-based access control	 24
Setting up Access Control Layer-based authentication	 27
Integrating with OpenID	 34

Chapter 2: Model Bindings	 39
Introduction	 39
Adding Containable to all models	 40
Limiting the bindings returned in a find	 41
Modifying binding parameters for a find	 50
Modifying binding conditions for a find	 55
Changing the JOIN type of one-to-one associations	 56
Defining multiple associations to the same model	 57
Adding bindings on the fly	 60

Chapter 3: Pushing the Search	 63
Introduction	 63
Performing GROUP and COUNT queries	 64
Using virtual fields	 71
Building queries with ad-hoc JOINs	 75
Searching for all items that match search terms	 78
Implementing a custom find type	 80

ii

Table of Contents

Paginating a custom find type	 86
Implementing AJAX based pagination	 88

Chapter 4: Validation and Behaviors	 93
Introduction	 93
Adding multiple validation rules	 94
Creating a custom validation rule	 98
Using callbacks in behaviors	 103
Using behaviors to add new fields for saving	 111
Using the Sluggable behavior	 113
Geocoding addresses with the Geocodable behavior	 117

Chapter 5: Datasources	 123
Introduction	 123
Improving the SQL datasource query log	 123
Parsing CSV files with a datasource	 130
Consuming RSS feeds with a datasource	 135
Building a Twitter datasource	 139
Adding transaction and locking support to the MySQL datasource	 149

Chapter 6: Routing Magic	 159
Introduction	 159
Using named and GET parameters	 160
Using routes with prefixes	 166
Working with route elements	 171
Adding catch-all routes for profile pages	 174
Adding validation for catch-all routes	 177
Creating custom Route classes	 181

Chapter 7: Creating and Consuming Web Services	 185
Introduction	 185
Creating an RSS feed	 186
Consuming a JSON service	 192
Building REST services with JSON	 197
Adding authentication to REST services	 207
Implementing token-based authorization for API access	 212

Chapter 8: Working with Shells	 219
Introduction	 219
Building and running a shell	 219
Parsing command line parameters	 224
Creating reusable shell tasks	 229
Sending e-mails from shells	 240
Non-interactive tasks with the robot plugin	 244

iii

Table of Contents

Chapter 9: Internationalizing Applications	 251
Introduction	 251
Internationalizing controller and view texts	 252
Internationalizing model validation messages	 258
Translating strings with dynamic content	 262
Extracting and translating text	 265
Translating database records with the Translate behavior	 269
Setting and remembering the language	 274

Chapter 10: Testing	 279
Introduction	 279
Setting up the test framework	 279
Creating fixtures and testing model methods	 284
Testing controller actions and their views	 294
Using mocks to test controllers	 297
Running tests from the command line	 301

Chapter 11: Utility Classes and Tools	 303
Introduction	 303
Working with the Set class	 303
Manipulating strings with the String class	 312
Sending an e-mail	 315
Detecting file types with MagicDb	 320
Throwing and handling exceptions	 326

Index	 333

Preface
CakePHP is a rapid development framework for PHP that provides an extensible architecture
for developing, maintaining, and deploying web applications. While the framework has a lot of
documentation and reference guides available for beginners, developing more sophisticated
and scalable applications require a deeper knowledge of CakePHP features, a challenge that
proves difficult even for well established developers.

The recipes in this cookbook will give you instant results and will help you to develop web
applications, leveraging the CakePHP features that allow you to build robust and complex
applications. Following the recipes in this book (which show how to work with AJAX,
datasources, GEO location, routing, performance optimization, and more), you will be able
to understand and use these features in no time.

What this book covers
Chapter 1, Authentication: This chapter explains how to set up authentication on a CakePHP
application, starting from the most basic setup and finishing with advanced authorization
mechanisms. This is accomplished through the use of tools that are built into the framework
core, which allow us to quickly set up secure areas, without losing flexibility to build more
complex solutions.

The first two recipes show us how to set up a basic, yet fully working authentication system.
The next three recipes allow our users to log in using different information, have their user
details saved after a successful login, and show us how to get this user information. The
sixth recipe shows a more complex authorization technique that relies on route prefixes. The
seventh recipe sets up a complex authentication system through the use of CakePHP's Access
Control Layer. Finally, the last recipe shows us how to integrate our application with OpenID.

Chapter 2, Model Bindings: This chapter deals with one of the most important aspects of a
CakePHP application: the relationship between models, also known as model bindings or
associations. Being an integral part of any application's logic, it is of crucial importance that
we master all aspects of how model bindings can be manipulated to get the data we need,
when we need it.

Preface

2

In order to do so, we will go through a series of recipes that will show us how to change the
way bindings are fetched, what bindings and what information from a binding is returned,
how to create new bindings, and how to build hierarchical data structures

Chapter 3, Pushing the Search: Using models to fetch data is one of the most important
aspects of any CakePHP application. As such, a good use of the find functions the framework
provides can certainly guarantee the success of our application, and as importantly ensure
that our code is readable and maintainable.

In this chapter, we have several recipes to resort to manual SQL-based queries when the
need arises.

CakePHP also lets us define our custom find types that will extend the basic ones, allowing
our code to be even more readable. The last recipes in this chapter show us how to add
pagination support to our find type.

Chapter 4, Validation and Behaviors: This chapter deals with two aspects of CakePHP
models that are fundamental to most applications: validation and behaviors.

When we are saving information to a data source (such as a database), CakePHP will
automatically ensure that the data is quoted in order to prevent attacks, SQL injection
being the most common one. If we also need to ensure that the data follows a certain
format (for example, that a phone number is valid), we use validation rules.

There are also times where we need to do more than just validate the data we are working
with. In some cases, we need to set values for fields that the end user can't specify but are
part of our application logic. CakePHP's behaviors allow us to extend the functionality provided
by a model, using callbacks to manipulate the data before it's saved, or after it's fetched.

The third recipe shows us how to use model callbacks (such as beforeFind and
afterFind) in behaviors, while the fourth recipe shows how to use behaviors to add
additional field values when a save operation is being undertaken.

The last two recipes in this chapter give examples on how to use the Sluggable behavior (for
creating SEO friendly URLs), and the Geocodable behavior (to add geocoding support to an
Address model).

Chapter 5, Datasources: Datasources are the backbone of almost all model operations. They
provide an abstraction between model logic and the underlying data layer, allowing a more
flexible approach to data manipulation. Through this abstraction, CakePHP applications are
able to manipulate data without knowing the specifics of how it's stored, or fetched.

This chapter shows how to get information from existing datasources, use pre-built
datasources to deal with non-relational data, and teaches us how to create a full-featured
twitter datasource.

Preface

3

Chapter 6, Routing Magic: Almost every web-based application will eventually have to develop
a successful strategy to obtain better search engine position through a technique known as
search engine optimization.

This chapter starts by introducing some basic concepts of routing through the use of
route parameters, and continues to build optimized routes to leverage our search engine
placement.

The final section in this chapter shows us how to create highly optimized URLs for our user
profiles, and how to build custom Route classes to obtain even more flexibility.

Chapter 7, Creating and Consuming Web Services: Web services are essential when looking
forward to expose application functionality to third-party applications, or when looking forward
to integrate foreign services into our own applications. They offer a broad set of technologies
and definitions so systems written in different programming languages can communicate.

This chapter introduces a set of recipes to consume web services and to expose parts of our
application as web services.

Chapter 8, Working with Shells: One of the most powerful, yet unknown, features of CakePHP
is its shell framework. It provides applications with all that is required for building command
line tools, which can be used to perform intensive tasks and any other type of non interactive
processing.

This chapter introduces the reader to CakePHP shells by starting with the process of building
basic shells, and then moving on to more advanced features, such as sending e-mails, and
running controller actions from shells. It finishes by presenting the robot plugin, which offers
a fully featured solution for scheduling and running tasks.

Chapter 9, Internationalizing Applications: This chapter includes a set of recipes that allow the
reader to internationalize all aspects of their CakePHP applications, including static content
(such as those available in views), and dynamic content (such as database records).

The first two recipes show how to allow text that is part of any CakePHP view, or model
validation messages, to be ready for translation. The third recipe shows how to translate more
complex expressions. The fourth recipe shows how to run CakePHP's built in tools to extract all
static content that needs translation, and then translate that content to different languages.
The fifth recipe shows how to translate database records. Finally, the last recipe shows how to
allow users to change the current application language.

Chapter 10, Testing: This chapter covers one of the most interesting areas of application
programming: unit testing through CakePHP's built-in tools, which offers a complete and
powerful unit testing framework.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Preface

4

The first recipe shows how to set up the test framework so that we can create our own test
cases. The second recipe shows how to create test data (fixtures) and use that data to test
model methods. The third and fourth recipes show how to test controller actions, and how to
test that our views are showing what we expect. The last recipe shows how to run the test in a
non-ordinary fashion.

Chapter 11, Utility Classes and Tools: This chapter introduces a set of utility classes and
helpful techniques that improve the architecture of a CakePHP application.

The first recipe shows how to work with a CakePHP class that optimizes the manipulation of
arrays. The second recipe shows how to send an e-mail using the Email component. The third
recipe shows how to use the MagicDb class to detect the type of a file, and the last recipe
shows how to create application exceptions, and properly handle them when they are thrown.

What you need for this book
We need the following software for the book:

ff A web server supported by CakePHP (such as Apache)

ff A database engine supported by CakePHP (such as MySQL)

ff CakePHP installed, configured, and working properly

Who this book is for
If you are a CakePHP developer who wants to discover quick and easy ways to improve web
applications, and to leverage all aspects of the framework, this book is for you. This book
assumes that you already have knowledge of CakePHP and general PHP development skills.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Create a file named query_log.php and place it in
your app/controllers/components folder with the following contents:"

A block of code is set as follows:

CREATE TABLE `accounts`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `email` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

Preface

5

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "In that screen, make sure to
grab what is shown as Consumer key and Consumer secret, as we will need it when going
through this recipe."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

6

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Authentication

This chapter will cover the following topics:

ff Setting up a basic authentication system

ff Using and configuring the Auth component

ff Allowing logins with e-mail or username

ff Saving the user details after login

ff Getting the current user's information

ff Using prefixes for role-based access control

ff Setting up Access Control Layer based authentication

ff Integrating with OpenID

Introduction
This chapter explains how to set up authentication on a CakePHP application, starting
from the most basic setup and finishing with advanced authorization mechanisms. This is
accomplished through the use of tools that are built into the framework core, which allow us
to quickly set up secure areas without losing flexibility to build more complex solutions.

The first two recipes show us how to set up a basic, yet fully working authentication system.
The next three recipes allow our users to log in using different information, have their user
details saved after a successful login, and show us how to get this user information. The
sixth recipe shows a more complex authorization technique that relies on route prefixes. The
seventh recipe sets up a complex authentication system through the use of CakePHP's Access
Control Layer. Finally, the last recipe shows us how to integrate our application with OpenID.

Authentication

8

Setting up a basic authentication system
The first task to be completed when we are in the process of adding authentication to an
application is to identify which controllers will need user access. Normally we would make
every controller and action protected by default, and then we would specify which areas
of our application allow public access.

Getting ready
We must have a users table that should contain, at least, two fields: username (to hold the
username) and password (to hold a hash made out of the user's password).

If you don't have a table for this purpose, you can use the following SQL statement to create it:

CREATE TABLE `users`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `username` VARCHAR(255) NOT NULL,
	 `password` CHAR(40) NOT NULL,
	 PRIMARY KEY(`id`)
);

How to do it...
1.	 Create a file named users_controller.php and place it inside your app/

controllers folder with the following contents:
<?php
class UsersController extends AppController {
	 public function login() {
	 }
	 public function logout() {
		 $this->redirect($this->Auth->logout());
	 }
}
?>

2.	 Create a file named login.ctp in your app/views/users folder (create the folder
if you don't have one already), and add the following contents:
<?php
echo $this->Form->create(array('action'=>'login'));
echo $this->Form->inputs(array(
	 'legend' => 'Login',
	 'username',
	 'password'

Chapter 1

9

));
echo $this->Form->end('Login');
?>

3.	 Create a file named app_controller.php in your app/ folder with the following
contents:
<?php
class AppController extends Controller {
	 public $components = array(
		 'Auth' => array(
			 'authorize' => 'controller'
),
		 'Session'
);
	 public function isAuthorized() {
		 return true;
	 }
}
?>

4.	 Modify the UsersController, and add the following code before the login
method:
public function beforeFilter() {
	 parent::beforeFilter();
	 $this->Auth->allow('add');
}
public function add() {
	 if (!empty($this->data)) {
		 $this->User->create();
		 if ($this->User->save($this->data)) {
			 $this->Session->setFlash('User created!');
			 $this->redirect(array('action'=>'login'));
		 } else {
			 $this->Session->setFlash('Please correct the
errors');
		 }
	 }
}

5.	 Create a file named add.ctp and place it in your app/views/users folder with the
following contents:
<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
	 'legend' => 'Signup',

Authentication

10

	 'username',
	 'password'
));
echo $this->Form->end('Submit');
?>

We now have a fully working authentication system. We can add new users
by browsing to http://localhost/users/add, logging in by browsing to
http://localhost/users/login, and finally logging out by browsing to
http://localhost/users/logout.
After creating a user, you should see the login form with a success message, as
shown in the following screenshot:

How it works...
We start by creating two actions in the UsersController class: login(), to show and
process submissions of the login form, and logout(), to handle users logging out.

You may be surprised that the login() method has no logic whatsoever. To display the form,
all we need to do is display the action's view. The form submission is taken care of by the
Auth component, leaving us with no need to implement any controller logic. Therefore, the
only implementation we need is to create a view for this action, which includes a simple form
with two fields: username, and password.

Chapter 1

11

The inputs method of CakePHP's FormHelper is a shortcut designed
to avoid multiple calls to the input method. By using it, we can create a
full form with elements without the need to call FormHelper::input()
several times.

The logout() controller action simply calls the Auth component's logout() method. This
method removes the logged-in user data from the session, and returns the address to which
the user should be redirected after logging out, obtained from the previously configured
logoutRedirect setting of the component (defaults to the application's home page if the
setting was not configured.)

Next, we add two components to the controller: Session, and Auth. The Session
component is needed to create the messages (through the use of its setflash() method)
that informs the user if a login attempt was unsuccessful, or if a user was created.

The Auth component operates between your controller's actions and the incoming request by
means of the beforeFilter callback method. It uses it's authorize setting to check what
type of authentication scheme is to be used.

To obtain more information about the authorize setting, see the
recipe Using and configuring the Auth component.

Once the Auth component is added to a controller, all actions in that controller are not
accessible unless there is a valid user logged in. This means that if we had any actions that
should be public (such as the login() and add() actions in our controller), we would have
to tell the Auth component about them.

If one wishes to make some actions public, one can add the name of these actions to the
allowedActions setting of the Auth component, or by calling its allow() method. We use
the later approach to tell the Auth component that the add() action should be reachable
without a logged-in user. The login() action is automatically added to the list of public
actions by the Auth component.

When the user attempts to reach an action that is not within the public actions, the Auth
component checks the session to see if a user is already logged in. If a valid user is not
found, it redirects the browser to the login action. If there is a user who is logged in, it uses
the controller's isAuthorized method to check if the user has access. If its return value is
true, it allows access, otherwise access is rejected. In our case, we implemented this method
in AppController, our base controller class. If the attempted action requires a user who is
logged in, the login() action is executed. After the user submits data using the login form,
the component will first hash the password field, and then issue a find operation on the User
model to find a valid account, using the posted username and password. If a valid record is
found, it is saved to the session, marking the user as logged in.

Authentication

12

Hashing a password confirmation field
When the Auth component is enabled on a controller and the user submits a form with a field
named password (regardless if it is being rendered in the login form), the component will
automatically hash the password field before executing the controller's action.

The Auth component uses the salt defined in the configuration setting
Security.salt (in your app/config/core.php file) to calculate the
hash. Different salt values will produce different hashes even when using the
same password. Therefore, make sure you change the salt on all your CakePHP
applications, thus enhancing the security of your authentication system.

This means that the action will never hold the plain password value, and this should be
particularly noted when utilizing mechanisms to confirm password validations. When you
are implementing such validation, make sure you hash the confirmation field using the
proper method:

if (!empty($this->data)) {
	 $this->data['User']['confirm_password'] = $this->Auth-
>password($this->data['User']['confirm_password']);
	 // Continue with processing
}

See also
ff Using and configuring the Auth component

ff Getting the current user's information

Using and configuring the Auth component
If there is something that defines the Auth component, it is its flexibility that accounts for
different types of authentication modes, each of these modes serving different needs. In this
recipe, you will learn how to modify the component's default behavior, and how to choose
between the different authentications modes.

Getting ready
We should have a fully working authentication system, so follow the entire recipe Setting up a
basic authentication system.

We will also add support to have disabled user accounts. Add a field named active to your
users table with the following SQL statement:

ALTER TABLE `users`
ADD COLUMN `active` TINYINT UNSIGNED NOT NULL default 1;

Chapter 1

13

How to do it...
1.	 Modify the definition of the Auth component in your AppController class, so it

looks like the following:
public $components = array(
	 'Auth' => array(
		 'authorize' => 'controller',
		 'loginRedirect' => array(
			 'admin' => false,
			 'controller' => 'users',
			 'action' => 'dashboard'
),
		 'loginError' => 'Invalid account specified',
		 'authError' => 'You don\'t have the right permission'
),
'Session'
);

2.	 Now while still editing your app/app_controller.php file, place the following
code right below the components property declaration, at the beginning of the
beforeFilter method in your AppController class:
public function beforeFilter() {
	 if ($this->Auth->getModel()->hasField('active'))
		 {$this->Auth->userScope = array('active' => 1);
		 }
}

3.	 Copy the default layout from cake/libs/view/layouts/default.ctp to your
app/views/layouts directory, and make sure you place the following line in your
layout where you wish to display authentication messages:
<?php echo $this->Session->flash('auth'); ?>

4.	 Edit your app/controllers/users_controller.php file and place the following
method right below the logout() method:
public function dashboard() {
}

Authentication

14

5.	 Finally, create the view for this newly added action in a file named dashboard.ctp
and place it in your app/views/users folder with the following contents:

<p>Welcome!</p>

If you now browse to http://localhost/users/login and enter the wrong
credentials (wrong username and/or password), you should see the error message
shown in the following screenshot:

How it works...
As the Auth component does its magic right before a controller action is executed, we
either need to specify its settings in the beforeFilter callback, or pass them in an array
when adding the component to the components property. A common place to do it is in the
beforeFilter() method of the AppController class, as by doing so we can share the
same authentication settings throughout all our controllers.

This recipe changes some Auth settings, so that whenever a valid user logs in, they are
automatically taken to a dashboard action in the UsersController (done via the
loginRedirect setting.) It also adds some default error messages through the component's
respective settings: loginError for when the given account is invalid, and authError for
when there is a valid account, but the action is not authorized (which can be achieved by
returning false from the isAuthorized() method implemented in AppController.)

It also sets the component's userScope setting in AppController::beforeFilter().
This setting allows us to define which conditions the User find operation need to match to
allow a user account to log in. By adding the userScope setting, we ensure that only user
records that have the active field set to 1 are allowed access.

Chapter 1

15

Changing the default user model
As you may have noticed, the role of the User model is crucial, not only to fetch the right
user account, but also to check the permissions on some of the authentication schemes. By
default, the Auth component will look for a User model, but you can change which model is
to be used by setting the userModel property or the userModel key in the settings array.

For example, if your user model is Account, you would add the following setting when adding
the Auth component to your controller:

'userModel' => 'Account'

Or equivalently, you would add the following to the beforeFilter method of your
AppController class, in the block of code where you are setting up the component:

$this->Auth->userModel = 'Account';

There's more...
The $authorize property of the Auth component (or the authorize key in the Auth
component settings array) defines which authentication scheme should be used. Possible
values are:

ff controller: It makes the component use the controller's isAuthorized method,
which returns true to allow access, or false to reject it. This method is particularly
useful when obtaining the logged-in user (refer to the Getting the current user's
information recipe)

ff model: It is similar to controller; instead of using the controller to call the
method, it looks for the isAuthorized method in the User model. First, it tries
to map the controller's action to a CRUD operation (one of 'create', 'read',
'update', or 'delete'), and then calls the method with three arguments:
the user record, the controller that is being accessed, and the CRUD operation
(or actual controller action) that is to be executed.

ff object: It is similar to model; instead of using the model to call the method, it looks
for the isAuthorized method in a given class. In order to specify which class, set
the AuthComponent::$object property to an instance of such a class. It calls the
method with three arguments: the user record, the controller that is being accessed,
and the action that is to be executed.

ff actions: It uses the Acl component to check for access, which allows a much more
grained access control.

ff crud: It is similar to actions; the difference lies in the fact that it first tries to map
the controller's action to a CRUD operation (one of 'create', 'read', 'update',
or 'delete'.)

Authentication

16

See also
ff Getting the current user's information

ff Setting up Access Control Layer based authentication

Allowing logins with username or e-mail
By default the Auth component will use the given username posted in the login form to check
for a valid user account. However, some applications have two separate fields: one to define
the username, and another one to define the user's e-mail. This recipe shows how to allow
logins using either a username or an e-mail.

Getting ready
We should have a fully working authentication system, so follow the entire recipe, Setting
up a basic authentication system.

We also need the field to hold the user's e-mail address. Add a field named email to your
users table with the following SQL statement:

ALTER TABLE `users`
	 ADD COLUMN `email` VARCHAR(255) NOT NULL;

We need to modify the signup page so users can specify their e-mail address. Edit your
app/views/users/add.ctp file and make the following changes:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'legend' => 'Signup',
 'email',
 'username',
 'password'
));
echo $this->Form->end('Submit');
?>

Chapter 1

17

How to do it...
1.	 Edit your app/views/users/login.ctp file and make the following changes to it:

<?php
echo $this->Form->create(array('action'=>'login'));
echo $this->Form->inputs(array(
 'legend' => 'Login',
 'username' => array('label'=>'Username / Email'),
 'password'
));
echo $this->Form->end('Login');
?>

2.	 Edit your UsersController class and make sure the login action looks like the
following:
public function login() {
	 if (
		 !empty($this->data) &&
		 !empty($this->Auth->data['User']['username']) &&
		 !empty($this->Auth->data['User']['password'])
) {
	 $user = $this->User->find('first', array(
			 'conditions' => array(
				 'User.email' => $this->Auth-
>data['User']['username'],
				 'User.password' => $this->Auth-
>data['User']['password']
),
'recursive' => -1
));
	 if (!empty($user) && $this->Auth->login($user)) {
			 if ($this->Auth->autoRedirect) {
				 $this->redirect($this->Auth-
>redirect());
			 }
			 } else {
			 $this->Session->setFlash($this->Auth-
>loginError, $this->Auth->flashElement, array(), 'auth');
		 }
	 }
}

Authentication

18

If you now browse to http://localhost/users/login and you can enter the
user's e-mail and password to log in, as shown in the following screenshot:

How it works...
When the Auth component is unable to find a valid user account using the username and
password fields, it gives the control back to the login action. Therefore, in the login action
we can check if there is any submitted data. If that is the case, we know that the Auth
component was not able to find a valid account.

With this in mind, we can try to find a user account with an e-mail that matches the given
username. If there is one, we log the user in and redirect the browser to the default action,
similar to what the component would do on a successful attempt.

If we cannot find a valid user account, we simply set the flash message to the default error
message specified in the Auth component.

There's more...
You may have noticed that when looking for the user record, we used $this->Auth->data
rather than $this->data to use the actual posted values. The reason for this is because the
Auth component will not only automatically hash the password field, but also remove its value
from the controller's data property, so if you need to show the login form again, the password
field will not be pre-filled for the user.

Chapter 1

19

See also
ff Getting the current user's information

Saving the user details after login
One of the most typical functionalities offered by sites with authentication capabilities is the
ability to let the user choose (by clicking on a checkbox) whether they want the system to
remember their account after logging in.

Getting ready
We should have a working authentication system, so follow the entire recipe, Setting up a
basic authentication system.

How to do it...
1.	 Edit your app/app_controller.php file and add the following Auth component

settings to the Auth component. Also add the Cookie component by making
the following changes to the components property: AppController (in the
$components property) must include the following mandatory setting (if it is not
there, add it inside the array of settings for the component):
public $components = array(
	 'Auth' => array(
		 'authorize' => 'controller',
		 'autoRedirect' => false
),
	 'Cookie',
	 'Session'
);

2.	 Edit your app/views/users/login.ctp view file and make the following
changes:
<?php
echo $this->Form->create(array('action'=>'login'));
echo $this->Form->inputs(array(
	 'legend' => 'Login',
	 'username',
	 'password',
	 'remember' => array('type' => 'checkbox', 'label' =>
'Remember me')
));

Authentication

20

echo $this->Form->end('Login');
?>

3.	 Now, add the following code to the end of the login action of your
UsersController class:
if (!empty($this->data)) {
 $userId = $this->Auth->user('id');
 if (!empty($userId)) {
 if (!empty($this->data['User']['remember'])) {
 $user = $this->User->find('first', array(
 'conditions' => array('id' => $userId),
 'recursive' => -1,
 'fields' => array('username', 'password')
));
 $this->Cookie->write('User', array_intersect_key(
 $user[$this->Auth->userModel],
 array('username'=>null, 'password'=>null)
));
 } elseif ($this->Cookie->read('User') != null) {
 $this->Cookie->delete('User');
 }
 $this->redirect($this->Auth->redirect());
 }
}

4.	 Next, add the following code to the beginning of the logout() method of your
UsersController class:
if ($this->Cookie->read('User') != null) {
	 $this->Cookie->delete('User');
}

5.	 Finally, add the following method to your AppController class, right below the
components property declaration:
public function beforeFilter() {
 if ($this->Auth->user() == null) {
 $user = $this->Cookie->read('User');
 if (!empty($user)) {
 $user = $this->Auth->getModel()->find('first', array(
 'conditions' => array(
 $this->Auth->fields['username'] =>
$user[$this->Auth->fields['username']],
 $this->Auth->fields['password'] =>
$user[$this->Auth->fields['password']]
),
 'recursive' => -1

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1

21

));
 if (!empty($user) && $this->Auth->login($user)) {
 $this->redirect($this->Auth->redirect());
 }
 }
 }
}

How it works...
The first task we needed to accomplish was to disable the automatic redirect in the Auth
component. By doing so, we are able to catch both successful and failed log in attempts,
which allows us to check if they remember me checkbox is selected. If the checkbox is
indeed checked, we create a cookie named User that contains the values for the username
and password fields with a value equal to the user ID that logged in. Remember that the
password value is automatically encrypted by the Auth component, so it is safe for storage.
The Cookie component adds another layer of security by automatically encrypting and
decrypting the given values.

In AppController::beforeFilter(), when there is no logged-in user, we check to see if
the cookie is set. If it is, we use the values for the username and password fields stored in
the cookie to log in a user, and then redirect the browser to the login action.

Finally, we delete the cookie when it is appropriate (when a user logs in without the checkbox
selected, or when the user manually logs out).

See also
ff Getting the current user's information

Getting the current user's information
CakePHP's authentication system will provide us with the necessary tools to build a strong,
flexible Auth based application. We can then use it to fetch the current user information and
make it available throughout our application.

In this recipe, we will see how to save the current logged-in user's information so it is
accessible from any point of our CakePHP application, including its layout, while adding a
helpful method to the User model to make the job easier.

Authentication

22

Getting ready
We should have a working authentication system, so follow the recipe, Setting up a basic
authentication system.

How to do it...
1.	 Add the following method to your AppController class:

public function beforeFilter() {
	 $user = $this->Auth->user();
	 if (!empty($user)) {
		 Configure::write('User', $user[$this->Auth-
>getModel()->alias]);
	 }
}

2.	 Also in your AppController class, add the following method inside the class
definition:
public function beforeRender() {
	 $user = $this->Auth->user();
	 if (!empty($user)) {
		 $user = $user[$this->Auth->getModel()->alias];
	 }
	 $this->set(compact('user'));

}

3.	 Copy the default CakePHP layout file named default.ctp from your cake/libs/
view/layouts folder to your application's app/views/layouts folder. Place the
following code in the app/views/layouts/default.ctp folder. While editing this
layout, add the following code right where you want login / logout links to appear:
<?php if (!empty($user)) { ?>
Welcome back <?php echo $user['username']; ?>!
	 <?php
	 echo $this->Html->link('Log out', array('plugin'=>null,
'admin'=>false, 'controller'=>'users', 'action'=>'logout'));
} else {
	 echo $this->Html->link('Log in', array('plugin'=>null,
'admin'=>false, 'controller'=>'users', 'action'=>'login'));
}
?>

Chapter 1

23

4.	 Add the following method to the User model. If you do not have a model created for
the users table, proceed to create a file named user.php and place it in your app/
models directory. If you do have one already, make sure you add the get method to
it:
<?php
class User extends AppModel {
	 public static function get($field = null) {
		 $user = Configure::read('User');
		 if (empty($user) || (!empty($field) && !array_key_
exists($field, $user))) {
			 return false;
		 }
	 return !empty($field) ? $user[$field] : $user;
	 }
}
?>

How it works...
By storing the user record in an application-wide configuration variable, we are able to obtain
the current user information from anywhere in our application, whether it is controllers,
components, models, and so on. This gives us the power to know if there's a logged-in user at
any point.

We also need to make sure that views are able to learn whether there is a logged-in user.
Even though a view could, technically speaking, still have access to the configure variable, it
is normally more elegant to set a view variable to avoid any interaction with PHP classes from
the view (except for the view helpers).

When you set variables for the view in AppController, it is very important
to make sure no controller action will overwrite the variable. Choose a unique
name wisely, and make sure you don't set a view variable with the same
name in your controllers.

Finally, we add a handy method to the User model, so we can obtain the current user from
our controllers without having to deal with the Configure variable. We can also use the get
method to collect a particular bit of user information. For example, to fetch the current user's
username from a controller, we would do something like the following:

$userName = User::get('username');

You should not have to load the User model class yourself, as the Auth component does it
for you.

Authentication

24

See also
ff Allowing logins with e-mail or username.

Using prefixes for role-based access control
Even though CakePHP provides a very powerful access control layer, sometimes we just need
to implement user roles without having to go into the details of specifying which role is allowed
access to which action.

This recipe shows how to limit access to certain actions by role-using routing prefixes, which
constitutes a perfect solution for simple role-based authentication. In order to accomplish this
recipe, we will assume the need to add three user roles in our application: administrators,
managers, and users.

Getting ready
We should have a working authentication system, so follow the recipe, Setting up a basic
authentication system. The users table should also contain a field to hold the user's role
(named role.) Add this field with the following SQL statement:

ALTER TABLE `users`
	 ADD COLUMN `role` VARCHAR(255) DEFAULT NULL AFTER `password`;

How to do it...
1.	 Edit your app/config/core.php file and look for the line that defines the

Routing.prefixes setting. If it is commented out, uncomment it. Then change
it to:
Configure::write('Routing.prefixes', array('admin', 'manager'));

2.	 Add the following code at the end of your UsersController class definition:
public function dashboard() {
		 $role = $this->Auth->user('role');
		 if (!empty($role)) {
			 $this->redirect(array($role => true, 'action'
=> 'dashboard'));
		 }
}
public function admin_dashboard() {
}
public function manager_dashboard() {
}

Chapter 1

25

3.	 Create a view for each of these actions, and put content into it to reflect which view is
being rendered. Therefore, you would have to create three files:

�� app/views/users/admin_dashboard.ctp

�� app/views/users/manager_dashboard.ctp

�� app/views/users/dashboard.ctp

For example, the contents for dashboard.ctp could simply be:
<h1>Dashboard (User)</h1>

4.	 Edit your app/controllers/app_controller.php file and change the
components property declaration to include the following setting for the
Auth component:
public $components = array(
	 'Auth' => array(
		 'authorize' => 'controller',
		 'loginRedirect' => array(
			 'admin' => false,
			 'controller' => 'users',
			 'action' => 'dashboard'
)
),
	 'Session'
);

5.	 While still editing your AppController class, change the isAuthorized method
and replace it entirely with the following:
public function isAuthorized() {
	 $role = $this->Auth->user('role');
	 $neededRole = null;
	 $prefix = !empty($this->params['prefix']) ?
		 $this->params['prefix'] :
		 null;
	 if (
		 !empty($prefix) &&
		 in_array($prefix, Configure::read('Routing.
prefixes'))
) {
	 $neededRole = $prefix;
	 }
	 return (
		 empty($neededRole) ||
		 strcasecmp($role, 'admin') == 0 ||
		 strcasecmp($role, $neededRole) == 0
);
}

Authentication

26

6.	 Copy the default CakePHP layout file named default.ctp from your cake/libs/
view/layouts folder to your application's app/views/layouts folder. While
editing this layout, place the following code in the app/views/layouts/default.
ctp layout file, right where you want the link to the dashboard to appear.
<?php
$dashboardUrl = array('controller'=>'users',
'action'=>'dashboard');
if (!empty($user['role'])) {
	 $dashboardUrl[$user['role']] = true;
}
echo $this->Html->link('My Dashboard', $dashboardUrl);
?>

How it works...
CakePHP will recognize prefixes defined in the Routing.prefixes setting as part of
the URL, when they are preceding a normal route. For example, if admin is a defined
prefix, the route /admin/articles/index will translate to the admin_index action in
ArticlesController.

Since we are utilizing the controller authentication scheme in the Auth
configuration, we know that every time a user is trying to access a non-public action,
AppController::isAuthorized() is executed, and inside the method we set true
if the user has access, or false otherwise.

Knowing that, we can check to see if a prefix is being used when a controller action is about
to be executed. If the current route being accessed includes a prefix, we can match that prefix
against the user's role to make sure they have access to the requested resource.

We are able to link to a role-only resource just by prefixing it with the appropriate prefix in the
route. For example, to link to the manager's dashboard, the URL would be:

array(
	 'manager' => true,
	 'controller' => 'users',
	 'action' => 'dashboard'
);

See also
ff Setting up Access Control Layer based authentication.

Chapter 1

27

Setting up Access Control Layer-based
authentication

The more roles an application has, the more complex its Access Control Layer becomes.
Luckily, one of the authentication schemes provided by the Auth component allows us
to easily define which actions are accessible by certain roles (known as groups), using
command-line tools. In this recipe, you will learn how to set up ACL on your application.

Getting ready
We should have a table to hold the roles, named groups.

If you do not have one already, create it using the following statement:

CREATE TABLE `groups`(
	 `id` INT NOT NULL AUTO_INCREMENT,
	 `name` VARCHAR(255) NOT NULL,
	 PRIMARY KEY(`id`)
);

If you do not have any records in your groups table, create some by running the following
SQL statement:

INSERT INTO `groups`(`id`, `name`) VALUES
	 (1, 'Administrator'),
	 (2, 'Manager'),
	 (3, 'User');

We must also have a users table to hold the users, which should contain a field (named
group_id) to contain a reference to the group a user belongs to. If you do not have such a
table, create it using the following statement:

CREATE TABLE `users`(
	 `id` INT NOT NULL AUTO_INCREMENT,
	 `group_id` INT NOT NULL,
	 `username` VARCHAR(255) NOT NULL,
`password` CHAR(40) NOT NULL,
	 PRIMARY KEY(`id`),
	 KEY `group_id`(`group_id`),
	 CONSTRAINT `users__groups` FOREIGN KEY(`group_id`) REFERENCES
`groups`(`id`)
);

Authentication

28

We also need to have the ARO / ACO tables initialized. Using your operating system console,
switch to your application directory, and run:

�� If you are on a GNU Linux / Mac / Unix system:
	 ../cake/console/cake schema create DbAcl

�� If you are on Microsoft Windows:
	 ..\cake\console\cake.bat schema create DbAcl

How to do it...

The following initial steps are very similar to what is shown in Setting up
a basic authentication system. However, there are some differences
between the two that are crucial, so make sure you go through these
instructions carefully.

1.	 Create a controller for the User model (in a file named users_controller.php
placed inside your app/controllers folder), which should contain the following:
<?php
class UsersController extends AppController {
	 public function login() {
	 }
	 public function logout() {
		 $this->redirect($this->Auth->logout());
	 }
}
?>

2.	 Create a file named login.ctp in your app/views/users folder (create the folder
if you do not have one already), with the following contents:
<?php
echo $this->Form->create(array('action'=>'login'));
echo $this->Form->inputs(array(
	 'legend' => 'Login',
	 'username',
	 'password'
));
echo $this->Form->end('Login');
?>

Chapter 1

29

3.	 Create a file named app_controller.php in your app/ folder. Make sure it
contains the following:
<?php
class AppController extends Controller {
	 public $components = array(
		 'Acl',
		 'Auth' => array(
			 'authorize' => 'actions',
			 'loginRedirect' => array(
				 'admin' => false,
				 'controller' => 'users',
				 'action' => 'dashboard'
)
),
	 'Session'
);
}
?>

4.	 Modify the UsersController class and add the following code before its
login() method:
public function beforeFilter() {
	 parent::beforeFilter();
	 $this->Auth->allow('add');
}
public function add() {
	 if (!empty($this->data)) {
		 $this->User->create();
		 if ($this->User->save($this->data)) {
			 $this->Session->setFlash('User created!');
			 $this->redirect(array('action'=>'login'));
		 } else {
			 $this->Session->setFlash('Please correct the
errors');
		 }
	 }
	 $this->set('groups', $this->User->Group->find('list'));
}

5.	 Add the view for the action in the folder app/views/users by creating a file named
add.ctp with the following contents:
<?php
echo $this->Form->create();
echo $this->Form->inputs(array(

Authentication

30

	 'legend' => 'Signup',
	 'username',
	 'password',
	 'group_id'
));
echo $this->Form->end('Submit');
?>

6.	 Create a file named group.php and place it in your app/models folder with the
following contents:
<?php
class Group extends AppModel {
	 public $actsAs = array('Acl' => 'requester');
	 public function parentNode() {
		 if (empty($this->id) && empty($this->data)) {
			 return null;
		 }
	 $data = $this->data;
		 if (empty($data)) {
			 $data = $this->find('first', array(
				 'conditions' => array('id' => $this-
>id),
				 'fields' => array('parent_id'),
				 'recursive' => -1
));
		 }
		 if (!empty($data[$this->alias]['parent_id'])) {
			 return $data[$this->alias]['parent_id'];
		 }
		 return null;
	 }
}
?>

7.	 Create a file named user.php and place it in your app/models folder with the
following contents:
<?php
class User extends AppModel {
	 public $belongsTo = array('Group');
	 public $actsAs = array('Acl' => 'requester');
	 public function parentNode() {
	 }
	 public function bindNode($object) {
		 if (!empty($object[$this->alias]['group_id'])) {

Chapter 1

31

			 return array(
				 'model' => 'Group',
				 'foreign_key' => $object[$this->alias]
['group_id']
);
		 }
	 }
}
?>

Take note of the IDs for all the records in your groups table, as they are
needed to link each group to an ARO record.

8.	 Run the following commands in your console (change the references to 1, 2, 3 to
meet your own group IDs, if they are different).

�� If you are on a GNU Linux / Mac / Unix system, the commands are:
../cake/console/cake acl create aro root Groups
../cake/console/cake acl create aro Groups Group.1
../cake/console/cake acl create aro Groups Group.2
../cake/console/cake acl create aro Groups Group.3

�� If you are on Microsoft Windows, the commands are:
..\cake\console\cake.bat acl create aro root Groups
..\cake\console\cake.bat acl create aro Groups Group.1
..\cake\console\cake.bat acl create aro Groups Group.2
..\cake\console\cake.bat acl create aro Groups Group.3

9.	 Add the following code at the end of your UsersController class definition:
public function dashboard() {
	 $groupName = $this->User->Group->field('name',
		 array('Group.id'=>$this->Auth->user('group_id'))
);
	 $this->redirect(array('action'=>strtolower($groupName)));
}
public function user() {
}
public function manager() {
}
public function administrator() {
}

Authentication

32

10.	 Create a view for each of these actions, and put some distinctive content on each one
of them to reflect which view is being rendered. Therefore, you have to create three
files:

�� app/views/users/user.ctp

�� app/views/users/manager.ctp

�� app/views/users/administrator.ctp.

For example the contents for user.ctp could simply be:
<h1>Dashboard (User)</h1>

11.	 We have to tell ACL about these restricted actions. Run the following commands in
your console.

�� If you are on a GNU Linux / Mac / Unix system, the commands are:
../cake/console/cake acl create aco root controllers
../cake/console/cake acl create aco controllers Users
../cake/console/cake acl create aco controllers/Users
logout
../cake/console/cake acl create aco controllers/Users user
../cake/console/cake acl create aco controllers/Users
manager
../cake/console/cake acl create aco controllers/Users
administrator

�� If you are on Microsoft Windows, the commands are:
..\cake\console\cake.bat acl create aco root controllers
..\cake\console\cake.bat acl create aco controllers Users
..\cake\console\cake.bat acl create aco controllers/Users
logout
..\cake\console\cake.bat acl create aco controllers/Users
user
..\cake\console\cake.bat acl create aco controllers/Users
manager
..\cake\console\cake.bat acl create aco controllers/Users
administrator

12.	 Finally, we have to grant permissions by linking each ARO (groups) to each ACO
(controller's actions). Run the following commands in your console.

�� If you are on a GNU Linux / Mac / Unix system, the commands are:
../cake/console/cake acl grant Group.1 controllers/Users
all
../cake/console/cake acl grant Group.2 controllers/Users/
logout all
../cake/console/cake acl grant Group.2 controllers/Users/
manager all

Chapter 1

33

../cake/console/cake acl grant Group.3 controllers/Users/
logout all
../cake/console/cake acl grant Group.3 controllers/Users/
user all

�� If you are on Microsoft Windows, the commands are:
..\cake\console\cake.bat acl grant Group.1 controllers/
Users all
..\cake\console\cake.bat acl grant Group.2 controllers/
Users/logout all
..\cake\console\cake.bat acl grant Group.2 controllers/
Users/manager all
..\cake\console\cake.bat acl grant Group.3 controllers/
Users/logout all
..\cake\console\cake.bat acl grant Group.3 controllers/
Users/user all

We now have a fully working ACL based authentication system. We can add new
users by browsing to http://localhost/users/add, logging in with http://
localhost/users/login, and finally logging out with http://localhost/
users/logout.

Users should only have access to http://localhost/users/user, managers to
http://localhost/users/manager, and administrators should be able to access
all those actions, including http://localhost/users/administrator.

How it works...
When setting the authorize configuration option of the Auth component to actions,
and after adding Acl to the list of controller-wide components, CakePHP will check to see if
the current action being accessed is a public action. If this is not the case, it will check for a
logged-in user with a matching ACO record. If there is no such record, it will deny access.

Once there is a matching ACO for the controller action, it will use the bindNode method in
the User model to see how a user record is matched to an ARO. The method implementation
we added specifies that a user record should be looked up in the aros table by means of the
group that the user belongs to.

After having both the matching ACO and ARO, it lastly checks to see whether there is a valid
permission set up (in the aros_acos table) for the given ARO and ACO records. If it finds one,
it allows access, otherwise it will reject authorization.

It is of vital importance that each record in the groups table has a matching ARO record.
We set that association by issuing aro create commands to link each group ID to an ARO
record of the form Group.ID, where ID is the actual ID.

Authentication

34

Similarly, all controller actions that are not within the defined public actions should have
a matching ACO record. Just as with AROs, we create the association between controller's
actions and ACOs issuing aco create commands, setting the ACO name to be the action
name, and making them child of an ACO which name is the controller name.

Finally, to grant the permission of an ARO (group) to an ACO (controller's actions), we issue
acl grant commands, specifying as the first argument the ARO (Group.ID) and the second
argument either a whole controller (such as controllers/Users), or a specific controller
action (such as controllers/Users/logout). The last argument to the grant command
(all) simply gives a further control of the type of access, and makes more sense when using
ACL to control access to custom objects, or when using the crud authentication scheme.

There's more...
While developing an application, the task of matching each controller action to an ACO may be
somewhat troublesome. Fortunately, several people in the CakePHP community felt the need
for an easier solution. One of the solutions that I'd recommend is adopting acl_extras, a
plugin developed by Mark Story, the lead developer of the CakePHP 1.3 release. By using this
plugin, you will be able to continuously synchronize your controllers with the acos table. Find
more about it, including its installation instructions, at http://github.com/markstory/
acl_extras.

See also
ff Using prefixes for role-based access control.

Integrating with OpenID
OpenID (http://openid.net) is a great way to allow users to log in without having to have
an actual username in your application. It is a solution that is widely adopted, and has proven
itself on many popular sites (such as Google, Yahoo, MySpace, and AOL).

This recipe shows how to add support for OpenID logins in a transparent way, while still
working with a valid Auth implementation.

Getting ready
We should have a working authentication system, so follow the recipe, Setting up a basic
authentication system.

Chapter 1

35

We will also need the PHP OpenID Library. Download the latest release from https://
github.com/openid/php-openid/downloads and extract the folder named Auth from
the downloaded file into your app/vendors folder. You should now have a directory named
Auth inside your vendors folder.

Finally, we need to download the OpenID plugin for CakePHP. Go to http://github.
com/mariano/openid/downloads and download the latest release. Uncompress the
downloaded file into your app/plugins folder. You should now have a directory named
openid inside app/plugins.

How to do it...
1.	 Edit your AppController class and change the reference for the Auth component

from Auth to Openid.OpenAuth. The components property should now look like
this:
public $components = array(
	 'Openid.OpenAuth' => array(
		 'authorize' => 'controller'
),
	 'Session'
);

2.	 Next, edit the login view (in app/views/users/login.ctp) and add a field to
allow the user to specify their OpenID URL. The view should now look like this:
<?php
echo $this->Form->create(array('action'=>'login'));
echo $this->Form->inputs(array(
	 'legend' => 'Login',
	 'openid' => array('label' => 'OpenID URL'),
	 'username',
	 'password'
));
echo $this->Form->end('Login');
?>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Authentication

36

You should now be able to log in using either a valid username and password
combination, or an OpenID URL, as shown in the following screenshot:

How it works...
As the OpenAuth component (a part of the openid plugin) extends the CakePHP built-in
Auth component, it works in a similar fashion. When the component cannot seem to find a
way to log in the user with a username and password, it will check whether the OpenID URL
is specified.

If this is the case, it will attempt to authenticate the URL against the OpenID server. When it
does, the user is taken to the OpenID server so the application can be granted permission
to access the OpenID credentials. When permission is given, the user is taken back to the
application, at a point on which the OpenAuth component is able to mark the user as logged
in, and resume the normal application work flow.

There's more...
The openid plugin has further options to customize its behavior; including the ability
to specify which user information should be given back. Check the documentation in
http://github.com/mariano/openid.

Chapter 1

37

Being a standard Auth implementation, this integration can be combined with any of the
other recipes we have seen in this chapter, which allows for a flexible open authentication
solution. If you do, make sure to note that the user given back by the OpenAuth component
does not contain a valid user record, so you should create one upon log in.

Even when you are using the OpenAuth component which clearly has a different name
than Auth, you can still use $this->Auth to set properties or call, for example, the allow
method. This is possible because the component creates an alias.

See also
ff Getting the current user's information.

2
Model Bindings

In this chapter, we will cover:

ff Adding Containable to all models

ff Limiting the bindings returned in a find

ff Modifying binding parameters for a find

ff Modifying binding conditions for a find

ff Changing the JOIN type of one-to-one associations

ff Defining multiple associations to the same model

ff Adding bindings on the fly

Introduction
This chapter deals with one of the most important aspects of a CakePHP application: the
relationship between models, also known as model bindings or associations.

Being an integral part of any application's logic, it is of crucial importance that we master all
aspects of how model bindings can be manipulated to get the data we need, when we need it.

In order to do so, we will go through a series of recipes that will show us how to change the
way bindings are fetched, what bindings and what information from a binding is returned,
how to create new bindings, and how to build hierarchical data structures.

Model Bindings

40

Adding Containable to all models
The Containable behavior is a part of the CakePHP core, and is probably one of the most
important behaviors we have to help us deal with model bindings.

Almost all CakePHP applications will benefit from its functionalities, so in this recipe we see
how to enable it for all models.

How to do it...
Create a file named app_model.php and place it in your app/ folder, with the following
contents. If you already have one, make sure that either you add the actsAs property
shown as follows, or that your actsAs property includes Containable.

<?php
class AppModel extends Model {
	 public $actsAs = array('Containable');
}
?>

How it works...
The Containable behavior is nothing more and nothing less than a wrapper around the
bindModel() and unbindModel() methods, defined in the CakePHP's Model class. It is
there to help us deal with the management of associations without having to go through a
lengthy process of redefining all the associations when calling one of these methods, thus
making our code much more readable and maintainable.

This is a very important point, because a common mistake CakePHP users make is to think
that Containable is involved in the query-making process, that is, during the stage where
CakePHP creates actual SQL queries to fetch data.

Containable saves us some unneeded queries, and optimizes the information that is
fetched for each related model, but it will not serve as a way to change how queries are built
in CakePHP.

See also
ff Limiting the bindings returned in a find

ff Modifying binding parameters for a find

ff Modifying binding conditions for a find

Chapter 2

41

Limiting the bindings returned in a find
This recipe shows how to use Containable to specify what related models are returned as
a result of a find operation. It also shows us how to limit which fields are obtained for each
association.

Getting ready
To go through this recipe we need some sample tables to work with.

1.	 Create a table named families, using the following SQL statement:
CREATE TABLE `families`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `name` VARCHAR(255) NOT NULL,
	 PRIMARY KEY(`id`)
);

2.	 Create a table named people, using the following SQL statement:
CREATE TABLE `people`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `family_id` INT UNSIGNED NOT NULL,
	 `name` VARCHAR(255) NOT NULL,
	 `email` VARCHAR(255) NOT NULL,
	 PRIMARY KEY(`id`),
	 KEY `family_id`(`family_id`),
	 CONSTRAINT `people__families` FOREIGN KEY(`family_id`)
REFERENCES `families`(`id`)
);

3.	 Create a table named profiles, using the following SQL statement:
CREATE TABLE `profiles`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `person_id` INT UNSIGNED NOT NULL,
	 `website` VARCHAR(255) default NULL,
	 `birthdate` DATE default NULL,
	 PRIMARY KEY(`id`),
	 KEY `person_id`(`person_id`),
	 CONSTRAINT `profiles__people` FOREIGN KEY(`person_id`)
REFERENCES `people`(`id`)
);

Model Bindings

42

4.	 Create a table named posts, using the following SQL statement:
CREATE TABLE `posts`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `person_id` INT UNSIGNED NOT NULL,
	 `title` VARCHAR(255) NOT NULL,
	 `body` TEXT NOT NULL,
	 `created` DATETIME NOT NULL,
	 `modified` DATETIME NOT NULL,
	 PRIMARY KEY(`id`),
	 KEY `person_id`(`person_id`),
	 CONSTRAINT `posts__people` FOREIGN KEY(`person_id`)
REFERENCES `people`(`id`)
);

Even if you do not want to add foreign key constraints to your tables, make
sure you use KEYs for each field that is a reference to a record in another
table. By doing so, you will significantly improve the speed of your SQL queries
when the referenced tables are joined.

5.	 Add some sample data, using the following SQL statements:
INSERT INTO `families`(`id`, `name`) VALUES
	 (1, 'The Does');

INSERT INTO `people`(`id`, `family_id`, `name`, `email`) VALUES
	 (1, 1, 'John Doe', 'john.doe@example.com'),
	 (2, 1, 'Jane Doe', 'jane.doe@example.com');

INSERT INTO `profiles`(`person_id`, `website`, `birthdate`) VALUES
	 (1, 'http://john.example.com', '1978-07-13'),
	 (2, NULL, '1981-09-18');

INSERT INTO `posts`(`person_id`, `title`, `body`, `created`,
`modified`) VALUES
	 (1, 'John\'s Post 1', 'Body for John\'s Post 1', NOW(),
NOW()),
	 (1, 'John\'s Post 2', 'Body for John\'s Post 2', NOW(),
NOW());

6.	 We need Containable added to all our models, so follow the recipe Adding
Containable to all models.

7.	 We proceed now to create the main model. Create a file named person.php and
place it in your app/models folder with the following contents:
<?php
class Person extends AppModel {
	 public $belongsTo = array('Family');

Chapter 2

43

	 public $hasOne = array('Profile');
	 public $hasMany = array('Post');
}
?>

8.	 Create the model Family in a file named family.php and place it in your app/
models folder with the following contents:

<?php
class Family extends AppModel {
	 public $hasMany = array('Person');
}
?>

How to do it...
When Containable is available for our models, we can add a setting to the find operation
called contain. In that setting we specify, in an array-based hierarchy, the associated data
we want returned. A special value contain can receive is false, or an empty array, which
tells Containable not to return any associated data.

For example, to get the first Person record without associated data, we simply do:

$person = $this->Person->find('first', array(
	 'contain' => false
));

Another way to tell CakePHP not to obtain related data is
through the use of the recursive find setting. Setting
recursive to -1 will have exactly the same effect as
setting contain to false.

If we want to obtain the first Person record together with the Family they belong to, we do:

$person = $this->Person->find('first', array(
	 'contain' => array('Family')
));

Using our sample data, the above query will result in the following array structure:

array(
	 'Person' => array(
		 'id' => '1',
		 'family_id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com'

Model Bindings

44

),
	 'Family' => array(
		 'id' => '1',
		 'name' => 'The Does'
)
)

Let's say that now we also want to obtain all Post records for the person and all members in
the family that Person belongs to. We would then have to do:

$person = $this->Person->find('first', array(
	 'contain' => array(
		 'Family.Person'
		 'Post'
)
));

The above would result in the following array structure (the created and modified fields
have been removed for readability):

array(
	 'Person' => array(
		 'id' => '1',
		 'family_id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com'
),
	 'Family' => array(
		 'id' => '1',
		 'name' => 'The Does',
		 'Person' => array(
			 array(
				 'id' => '1',
				 'family_id' => '1',
				 'name' => 'John Doe',
				 'email' => 'john.doe@example.com'
),
			 array(
				 'id' => '2',
				 'family_id' => '1',
				 'name' => 'Jane Doe',
				 'email' => 'jane.doe@example.com'
)
)
),
	 'Post' => array(

Chapter 2

45

		 array(
			 'id' => '1',
			 'person_id' => '1',
			 'title' => 'John\'s Post 1',
			 'body' => 'Body for John\'s Post 1'
),
		 array(
			 'id' => '2',
			 'person_id' => '1',
			 'title' => 'John\'s Post 2',
			 'body' => 'Body for John\'s Post 2'
)
)
)

We can also use Containable to specify which fields from a related model we want to fetch.
Using the preceding sample, let's limit the Post fields so we only return the title and the
Person records for the person's Family, so we only return the name field. We do so by
adding the name of the field to the associated model hierarchy:

$person = $this->Person->find('first', array(
	 'contain' => array(
		 'Family.Person.name',
		 'Post.title'
)
));

The returned data structure will then look like this:

array(
	 'Person' => array(
		 'id' => '1',
		 'family_id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com'
),
	 'Family' => array(
		 'id' => '1',
		 'name' => 'The Does',
		 'Person' => array(
			 array(
				 'name' => 'John Doe',
				 'family_id' => '1',
				 'id' => '1'
),
			 array(

Model Bindings

46

				 'name' => 'Jane Doe',
				 'family_id' => '1',
				 'id' => '2'
)
)
),
	 'Post' => array(
		 array(
			 'title' => 'John\'s Post 1',
			 'id' => '1',
			 'person_id' => '1'
),
		 array(
			 'title' => 'John\'s Post 2',
			 'id' => '2',
			 'person_id' => '1'
)
)
)

You may notice that even when we indicated specific fields for the Family => Person binding,
and for the Post binding, there are some extra fields being returned. Those fields (such as
family_id) are needed by CakePHP, and known as foreign key fields, to fetch the associated
data, so Containable is smart enough to include them in the query.

Let us say that we also want a person's e-mail. As there is more than a field needed, we will
need to use the array notation, using the fields setting to specify the list of fields:

$person = $this->Person->find('first', array(
	 'contain' => array(
		 'Family' => array(
			 'Person' => array(
				 'fields' => array('email', 'name')
)
),
		 'Post.title'
)
));

Chapter 2

47

How it works...
We use the contain find setting to specify what type of containment we want to use for the
find operation. That containment is given as an array, where the array hierarchy mimics that
of the model relationships. As the hierarchy can get deep enough to make array notation
complex to deal with, the dot notation used throughout this recipe serves as an useful and
more readable alternative.

If we want to refer to the model Person that belongs to the model Family, the proper
contain syntax for that is Person => Family (we can also use Person.Family,
which is more concise.)

We also use the fields setting to specify which fields we want fetched for a binding. We do
that by specifying an array of field names as part of the binding Containable setting.

Containable looks for the contain find setting right before we issue a find operation on a
model. If it finds one, it alters the model bindings to be returned by issuing unbindModel()
calls on the appropriate models to unbind those relationships that are not specified in the
contain find setting. It then sets the recursive find setting to the minimum value required
to fetch the associated data.

Let us use a practical example to further understand this wrapping process. Using our
Person model (which has a belongsTo relationship to Family, a hasOne relationship to
Profile, and a hasMany relationship to Post), the following Containable based query:

$person = $this->Person->find('first', array(
	 'contain' => array('Family.Person')
));

or the same query using array notation:

$person = $this->Person->find('first', array(
	 'contain' => array('Family' => 'Person')
));

is equivalent to the following set of instructions, which do not use Containable, but the
built in unbindModel() method available in CakePHP's Model class:

$this->Person->unbindModel(array(
	 'hasOne' => array('Profile'),
	 'hasMany' => array('Post')
));
$person = $this->Person->find('first', array(
	 'recursive' => 2
));

Model Bindings

48

Not using Containable is not only much more complicated, but can also pose a problem
if we decide to alter some of our relationships. In the preceding example, if we decide to
remove the Profile binding, or change its relationship type, we would have to modify the
unbindModel() call. However, if we are using Containable, the same code applies,
without us having to worry about such changes.

Format of the contain find parameter
We have seen how to use the contain find parameter to limit which bindings are returned
after a find operation. Even when its format seems self-explanatory, let us go through
another example to have a deeper understanding of Containable's array notation. Assume
that we have the models and relationships shown in the following diagram:

Transforming that diagram to something the Containable behavior understands is
as simple as writing it using an array structure. For example, if we are issuing a find
operation on the User model and we want to refer to the Profile relationship, a simple
array('Profile') expression would suffice, as the Profile model is directly related to
the User model.

If we want to refer to the Comment relationship for the Article records the User is an
owner of, which belongs to an Article that itself belongs to our User model, then we add
another dimension to the structure, which is now represented as array('Article' =>
'Comment').

We can already deduce how the next example will look like. Assume we want to obtain the
Comment together with the Profile of the User that commented on each Article.
The structure will then look like: array('Article' => array('Comment' =>
array('User' => 'Profile'))).

Sometimes we want to simplify the readability, and fortunately the Containable behavior
allows the above expression to be rewritten as array('Article.Comment.User.
Profile'), which is known as dot notation. However, if you want to change other parameters
to the binding, then this syntax would have to be changed to the full array-based expression
(see section See also in this recipe).

Chapter 2

49

Reset of binding changes
When you issue a find operation that uses the Containable behavior to change some of
its bindings, CakePHP will reset all bindings' changes to their original states, once the find
is completed. This is what is normally wanted on most cases, but there are some scenarios
where you want to keep your changes until you manually reset them, such as when you need
to issue more than one find operation and have all those finds use the modified bindings.

To force our binding changes to be kept, we use the reset option in the contain find
parameter, setting it to false. When we are ready to reset them, we issue a call to the
resetBindings() method added by the Containable behavior to our model. The
following sample code shows this procedure:

$person = $this->Person->find('first', array(
	 'contain' => array(
		 'reset' => false,

		 'Family'
)
));
// …
$this->Person->resetBindings();

Another way to achieve the same result is by calling the contain() method (setting its first
argument to the contained bindings, and its second argument to false to indicate that we
wish to keep these containments), available to all models that use Containable, issue the
find (without, need to use the contain setting), and then reset the bindings:

$this->Person->contain(array('Family'), false);

$person = $this->Person->find('first');

// …
$this->Person->resetBindings();

See also
ff Modifying binding parameters for a find

ff Modifying binding conditions for a find

Model Bindings

50

Modifying binding parameters for a find
This recipe shows how to use Containable to change some of the parameters that affect
model bindings.

Getting ready
To go through this recipe, we need some sample tables to work with.

1.	 Create a table named users, using the following SQL statement:
CREATE TABLE `users`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `name` VARCHAR(255) NOT NULL,
	 `email` VARCHAR(255) NOT NULL,
	 PRIMARY KEY(`id`)
);

2.	 Create a table named profiles, using the following SQL statement:
CREATE TABLE `profiles`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `user_id` INT UNSIGNED NOT NULL,
	 `website` VARCHAR(255) default NULL,
	 `birthdate` DATE default NULL,
	 PRIMARY KEY(`id`),
	 KEY `user_id`(`user_id`),
	 CONSTRAINT `profiles__users` FOREIGN KEY(`user_id`)
REFERENCES `users`(`id`)
);

3.	 Create a table named articles, using the following SQL statement:
CREATE TABLE `articles`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `user_id` INT UNSIGNED NOT NULL,
	 `title` VARCHAR(255) NOT NULL,
	 `body` TEXT NOT NULL,
	 `published` TINYINT NOT NULL default 1,
	 `created` DATETIME NOT NULL,
	 `modified` DATETIME NOT NULL,
	 PRIMARY KEY(`id`),
	 KEY `user_id`(`user_id`),
	 CONSTRAINT `articles__users` FOREIGN KEY(`user_id`)
REFERENCES `users`(`id`)
);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 2

51

4.	 Add some sample data, using the following SQL statements:
INSERT INTO `users`(`id`, `name`, `email`) VALUES
	 (1, 'John Doe', 'john.doe@example.com'),
	 (2, 'Jane Doe', 'jane.doe@example.com');

INSERT INTO `profiles`(`user_id`, `website`, `birthdate`) VALUES
	 (1, 'http://john.example.com', '1978-07-13'),
	 (2, NULL, '1981-09-18');

INSERT INTO `articles`(`user_id`, `title`, `body`, `published`,
`created`, `modified`) VALUES
	 (1, 'John\'s Post 1', 'Body for John\'s Post 1', 1, NOW(),
NOW()),
	 (1, 'John\'s Post 2', 'Body for John\'s Post 2', 1, NOW(),
NOW()),
	 (1, 'John\'s Post 3', 'Body for John\'s Post 3', 0, NOW(),
NOW()),
	 (1, 'John\'s Post 4', 'Body for John\'s Post 4', 1, NOW(),
NOW()),
	 (2, 'Jane\'s Post 1', 'Body for Jane\'s Post 1', 1, NOW(),
NOW());

5.	 Add the Containable behavior to all your models by following the recipe Adding
Containable to all models.

6.	 Now we need to create the main model. Create a file named user.php and place it
in your app/models folder with the following contents:
<?php
class User extends AppModel {
	 public $hasOne = array('Profile');
	 public $hasMany = array('Article');
}
?>

How to do it...
If we want to obtain the first User record together with the Article records that the User
owns, but ordered by latest articles first, we use the order binding setting (we also use the
fields setting to limit the fields returned for each Article):

$user = $this->User->find('first', array(
	 'contain' => array(
		 'Article' => array(
			 'fields' => array('Article.title'),
			 'order' => array(

Model Bindings

52

				 'Article.created' => 'desc',

				 'Article.id' => 'desc'

)

)
)
));

Using our sample data, the above query will result in the following array structure:

array(
	 'User' => array(
		 'id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com',
),
	 'Article' => array(
		 array(
			 'title' => 'John\'s Post 4',
			 'user_id' => '1'
),
		 array(
			 'title' => 'John\'s Post 3',
			 'user_id' => '1'
),
		 array(
			 'title' => 'John\'s Post 2',
			 'user_id' => '1'
),
		 array(
			 'title' => 'John\'s Post 1',
			 'user_id' => '1'
)
)
)

If we want to get the same data, but make sure we only obtain the latest Article a User
has written, we use the limit binding setting:

$user = $this->User->find('first', array(
	 'contain' => array(
		 'Article' => array(
			 'fields' => array('Article.title'),
			 'order' => array(
				 'Article.created' => 'desc',
				 'Article.id' => 'desc'

Chapter 2

53

),
			 'limit' => 1

)
)
));

Using our sample data, the above query will result in the following array structure:

array(
	 'User' => array(
		 'id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com',
),
	 'Article' => array(
		 array(
			 'title' => 'John\'s Post 4',
			 'user_id' => '1'
)
)
)

Another option that is useful on some scenarios is offset, applicable to the hasMany and
hasAndBelongsToMany bindings. Using the example above, we now want to obtain the two
most recent articles a User created, after the latest Article.

$user = $this->User->find('first', array(
	 'contain' => array(
		 'Article' => array(
			 'fields' => array('Article.title'),
			 'order' => array(
				 'Article.created' => 'desc',
				 'Article.id' => 'desc'
),
			 'limit' => 2,

			 'offset' => 1

)
)
));

The returned data structure now looks like this:

array(
	 'User' => array(
		 'id' => '1',
		 'name' => 'John Doe',

Model Bindings

54

		 'email' => 'john.doe@example.com',
),
	 'Article' => array(
		 array(
			 'title' => 'John\'s Post 3',
			 'user_id' => '1'
),
		 array(
			 'title' => 'John\'s Post 2',
			 'user_id' => '1'
)
)
)

How it works...
The Containable behavior uses the built-in bindModel() method defined in CakePHP's
Model class to alter the binding settings defined in the contain find setting.

It goes through the defined bindings and checks to see whether there are defined binding
settings. If there are, it passes them to the bindModel() method for each of the specified
bindings.

Some binding settings make sense only on some relationship types. For example, the limit
setting used previously would not be useful on belongsTo or hasOne relationships.

The following list includes which settings can be specified for each relationship type:

ff belongsTo: className, conditions, foreignKey, order.

ff hasOne: className, conditions, foreignKey, order.

ff hasMany: className, conditions, finderQuery, foreignKey, limit,
offset, order.

ff hasAndBelongsToMany: associationForeignKey, className, conditions,
deleteQuery, finderQuery, foreignKey, insertQuery, joinTable, limit,
offset, order, unique, with.

See also
ff Modifying binding conditions for a find

Chapter 2

55

Modifying binding conditions for a find
This recipe shows how to use Containable to change the conditions used to fetch data
related to a model through a binding.

Getting ready
We need to have Containable added to our models, and we also need some sample models
and data to work with. Follow the recipe, Adding Containable to all models, and the Getting
ready section of the recipe, Modifying binding parameters for a find.

How to do it...
If we want to obtain the first User record together with the published Article records that
user owns, but ordered by latest articles first, and limiting some of the returned fields, we use
the conditions binding setting:

$user = $this->User->find('first', array(
	 'contain' => array(
		 'Article' => array(
			 'fields' => array('Article.title'),
			 'conditions' => array(

				 'Article.published' => 1

)

)
)
));

Using our sample data, the preceding query will result in the following array structure:

array(
	 'User' => array(
		 'id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com',
),
	 'Article' => array(
		 array(
			 'title' => 'John\'s Post 1',
			 'user_id' => '1'
),
		 array(
			 'title' => 'John\'s Post 2',
			 'user_id' => '1'
),

Model Bindings

56

		 array(
			 'title' => 'John\'s Post 4',
			 'user_id' => '1'
)
)
)

How it works...
The conditions binding setting is another binding parameter, such as those shown in the
recipe, Modifying binding parameters for a find. As such, the Containable behavior uses
the built-in bindModel() method defined in CakePHP's Model class to alter the binding
conditions defined in the contain find operation.

Changing the JOIN type of one-to-one
associations

When we are querying a model that has other associated models, CakePHP will issue a new
query to fetch the associated data, or use a LEFT JOIN SQL statement if the associated
model has a one-to-one relationship with the main model (through a binding defined with
belongsTo or hasOne.)

However there are times where we need to change the join type for one-to-one associations,
to use either a RIGHT JOIN or an INNER JOIN. This recipe shows us how to change the join
type for belongsTo and hasOne associations.

Getting ready
Follow the Getting ready section of the recipe, Limiting the bindings returned in a find.

How to do it...
1.	 Edit the Person model, and change the binding definitions for belongsTo and

hasOne associations, as shown below:
<?php
class Person extends AppModel {
	 public $belongsTo = array('Family' => array('type' =>
'INNER'));
	 public $hasOne = array('Profile' => array('type' =>
'RIGHT'));
	 public $hasMany = array('Post');
}
?>

Chapter 2

57

How it works...
When we add bindings to a model, we can pass an array of settings to the binding definition
to configure different aspects of the binding. One of those settings is type, only applicable to
belongsTo and hasOne bindings.

The type setting allows us to define what type of JOIN CakePHP will use when fetching the
associated model (only when querying the main model.) The available JOIN types are:

ff INNER JOIN: Joins and only returns records from associated models that match the
default join condition. When a binding is set to use this join type, only records that
have a record for the binding will be returned. In the example above, only Person
records that belong to a Family will be returned.

ff LEFT JOIN: This is the default join type used by CakePHP. All records are returned
even if there is no record for the binding. In the example above, if the Family binding
type is set to LEFT, then Person records will be returned even if they don't belong to
a Family.

ff RIGHT JOIN: The opposite of LEFT JOIN, shows all records from the related model
even if they are not related to the main model, and shows only records in the main
model that are linked to the related model.

Defining multiple associations to the
same model

This recipe shows how to set up more than one association from one model to the same
model, a need that normally arises on most applications.

Getting ready
To go through this recipe we need some sample tables to work with.

1.	 Create a table named addresses, using the following SQL statement:
CREATE TABLE `addresses`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `address` TEXT NOT NULL,
	 `city` VARCHAR(255) default NULL,
	 `state` VARCHAR(255) NOT NULL,
	 `zip` VARCHAR(10) NOT NULL,
	 `country` CHAR(3) NOT NULL,
	 PRIMARY KEY(`id`)
);

Model Bindings

58

2.	 Create a table named users, using the following SQL statement:
CREATE TABLE `users`(
	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
	 `billing_address_id` INT UNSIGNED default NULL,
	 `home_address_id` INT UNSIGNED default NULL,
	 `name` VARCHAR(255) NOT NULL,
	 `email` VARCHAR(255) NOT NULL,
	 PRIMARY KEY(`id`),
	 KEY `billing_address_id`(`billing_address_id`),
	 KEY `home_address_id`(`home_address_id`),
	 CONSTRAINT `addresses__billing_address_id` FOREIGN
KEY(`billing_address_id`) REFERENCES `addresses`(`id`),
	 CONSTRAINT `addresses__home_address_id` FOREIGN KEY(`home_
address_id`) REFERENCES `addresses`(`id`)
);

3.	 Add some sample data, using the following SQL statements:
INSERT INTO `addresses`(`id`, `address`, `city`, `state`, `zip`,
`country`) VALUES
	 (1, '123 Street', 'Palo Alto', 'CA', '94310', 'USA'),
	 (2, '123 Street', 'London', 'London', 'SE10AA', 'GBR');

INSERT INTO `users`(`billing_address_id`, `home_address_id`,
`name`, `email`) VALUES
	 (1, 2, 'John Doe', 'john.doe@example.com');

4.	 Now we need to create the main model. Create a file named user.php and place it
in your app/models folder with the following contents:
<?php
class User extends AppModel {
}
?>

How to do it...
Edit the User model, and add the binding definitions to include both references to the
Address model:

<?php
class User extends AppModel {
	 public $belongsTo = array(
		 'BillingAddress' => array(
			 'className' => 'Address'
),
		 'HomeAddress' => array(

Chapter 2

59

			 'className' => 'Address'
)
);
}
?>

If we issue a find operation to fetch the User, we would obtain the following data structure:

array(
	 'User' => array(
		 'id' => '1',
		 'billing_address_id' => '1',
		 'home_address_id' => '2',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com',
),
	 'BillingAddress' => array(
		 'id' => '1',
		 'address' => '123 Street',
		 'city' => 'Palo Alto',
		 'state' => 'CA',
		 'zip' => '94310',
		 'country' => 'USA'
),
	 'HomeAddress' => array(
		 'id' => '2',
		 'address' => '123 Street',
		 'city' => 'London',
		 'state' => 'London',
		 'zip' => 'SE10AA',
		 'country' => 'GBR'
)
)

There's more...
In this example, the naming convention we used for the bindings is the standard CakePHP
uses for field names, where each uppercase letter is prefixed by an underscore sign,
everything is converted to lowercase, and the suffix _id is added. Thus, the standard field
name the binding named BillingAddress is billing_address_id.

Model Bindings

60

However there are times where we need to use a field name that does not comply with this
standard. In that case, we can use the foreignKey binding setting to specify the field name.
For example, we could change the User model definition so the name of the HomeAddress
becomes Address, which would make the User model look like this:

<?php
class User extends AppModel {
	 public $belongsTo = array(
		 'BillingAddress' => array(
			 'className' => 'Address'
),
		 'Address' => array(

			 'className' => 'Address',
			 'foreignKey' => 'home_address_id'

)
);
}
?>

When we use different aliases to refer to the same model, certain model
callback implementations, such as beforeSave, will need to be changed
to avoid using the name of the model directly, and instead use the property
alias, available in all models. More information about this can be obtained
from Nick Baker's article available at http://www.webtechnick.com/
blogs/view/230/The_Power_of_CakePHP_aliases.

Adding bindings on the fly
This recipe shows how to set up new bindings right before a find operation, including bindings
that are automatically removed after the operation is executed, and bindings that are
permanently added.

Getting ready
We need some sample models and data to work with. Follow the Getting ready section of the
recipe, Modifying binding parameters for a find.

Chapter 2

61

How to do it...
If we want to obtain the latest published Article when we are fetching a User, we could add
a permanent binding to the User model. However, if we want to do this on a need-by-need
basis, it is smarter to add the binding before the find operation that needs it, thus avoiding the
unneeded overhead for other operations.

We can add the needed binding and then issue the find operation:

$this->User->bindModel(array(
	 'hasOne' => array(
		 'LastArticle' => array(
			 'className' => 'Article',
			 'conditions' => array(
				 'LastArticle.published' => 1
),
			 'order' => array(
				 'LastArticle.created' => 'desc',
				 'LastArticle.id' => 'desc'
)
)
)
));
$user = $this->User->find('first', array(
	 'conditions' => array(
		 'User.id' => 1
),
	 'contain' => array(
		 'LastArticle' => array('fields' => array('title'))
)
));

The preceding code would give us the following data structure:

array(
	 'User' => array(
		 'id' => '1',
		 'name' => 'John Doe',
		 'email' => 'john.doe@example.com',
),
	 'LastArticle' => array(
		 'title' => 'John\'s Post 4'
)
)

Model Bindings

62

If we want to make the binding permanent until the request ends, but without adding the
binding to the User model, we simply add the value false as a second parameter to the
bindModel() call (this is needed if the operation is a paginate () call, as this call will
issue two find operations):

$this->User->bindModel(array(
	 'hasOne' => array(
		 'LastArticle' => array(
			 'className' => 'Article',
			 'conditions' => array(
				 'LastArticle.published' => 1
),
			 'order' => array(
				 'LastArticle.created' => 'desc',
				 'LastArticle.id' => 'desc'
)
)
)
), false);

How it works...
When you issue a bindModel() call, CakePHP will add the binding as if you specified it on
the model itself. If you did not set the second parameter to the method as false, that binding
will be automatically removed after the find operation is completed. If you did set it in order
to avoid the reset, then it will be kept until the script instance of your application is finished.

The format to specify bindings through bindModel() is an array, indexed by the binding type
(one of belongsTo, hasOne, hasMany, and hasAndBelongsToMany), whose value for each
binding type is an array of associations.

You define each association (as you would normally do) in the model, indexing it by
association name (if it is different than the model's name it is pointing to or if you have
binding parameters to define), or, optionally, simply referring to the related model.

3
Pushing the Search

In this chapter, we will cover:

ff Performing GROUP and COUNT queries

ff Using virtual fields

ff Building queries with ad-hoc JOINs

ff Searching for all items that match search terms

ff Implementing a custom find type

ff Paginating a custom find type

ff Implementing AJAX-based pagination

Introduction
Using models to fetch data is one of the most important aspects of any CakePHP application.
As such, a good use of the find functions the framework provides can certainly guarantee
the success of our application, and as importantly ensure that our code is readable and
maintainable.

CakePHP provides the following basic find types:

ff all: To find all records that match the given find options.

ff count: To count how many records match the given options.

ff first: To find the first record that matches the given find options.

ff list: To find all records that match the given find options, and formats them
as a list, using the format provided.

Pushing the Search

64

ff neighbors: To find the previous and after records of a matching record, based
on the value of a particular field.

ff threaded: To finds a set of results, and return them in a hierarchy, based on the
value of a field named parent_id.

Mastering these types is as easy as understanding the available find options all types deal
with. In this chapter, we have several recipes to make the most out of these options, and to
resort to manual SQL based queries when the need arises.

CakePHP also lets us define our custom find types that will extend the three basic ones,
allowing our code to be even more readable. The last recipes in this chapter show us how to
create our own find type, with pagination support.

Performing GROUP and COUNT queries
This recipe shows how to use CakePHP's built-in find types to perform relatively complex
GROUP and COUNT queries, including the combination of both.

Getting ready
To go through this recipe we need some sample tables to work with.

1.	 Create a table named users, using the following SQL statement:
CREATE TABLE `users`(

	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,

	 `name` VARCHAR(255) NOT NULL,

	 `email` VARCHAR(255) NOT NULL,

	 PRIMARY KEY(`id`)

);

2.	 Create a table named blogs, using the following SQL statement:
CREATE TABLE `blogs`(

	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,

	 `user_id` INT UNSIGNED NOT NULL,

	 `name` VARCHAR(255) NOT NULL,

	 PRIMARY KEY(`id`),

	 KEY `user_id`(`user_id`),

	 CONSTRAINT `blogs__users` FOREIGN KEY(`user_id`) REFERENCES
`users`(`id`)

);

Chapter 3

65

3.	 Create a table named posts, using the following SQL statement:
CREATE TABLE `posts`(

	 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,

	 `blog_id` INT UNSIGNED NOT NULL,

	 `title` VARCHAR(255) NOT NULL,

	 `body` TEXT NOT NULL,

	 `created` DATETIME NOT NULL,

	 `modified` DATETIME NOT NULL,

	 PRIMARY KEY(`id`),

	 KEY `blog_id`(`blog_id`),

	 CONSTRAINT `posts__blogs` FOREIGN KEY(`blog_id`) REFERENCES
`blogs`(`id`)

);

4.	 Add some sample data, using the following SQL statements:
INSERT INTO `users`(`id`, `name`, `email`) VALUES

	 (1, 'John Doe', 'john.doe@example.com'),

	 (2, 'Jane Doe', 'jane.doe@example.com');

INSERT INTO `blogs`(`user_id`, `name`) VALUES

	 (1, 'John Doe\'s Blog'),

	 (2, 'Jane Doe\'s Blog');

INSERT INTO `posts`(`blog_id`, `title`, `body`, `created`,
`modified`) VALUES

	 (1, 'John\'s Post 1', 'Body for John\'s Post 1', '2010-04-19
14:00:00', '2010-04-19 14:00:00'),

	 (1, 'John\'s Post 2', 'Body for John\'s Post 2', '2010-04-19
14:30:00', '2010-04-19 14:30:00'),

	 (1, 'John\'s Post 3', 'Body for John\'s Post 3', '2010-04-20
14:00:00', '2010-04-20 14:00:00'),

	 (1, 'John\'s Post 4', 'Body for John\'s Post 4', '2010-05-03
14:00:00', '2010-05-03 14:00:00'),

	 (2, 'Jane\'s Post 1', 'Body for Jane\'s Post 1', '2010-04-19
15:00:00', '2010-04-19 15:00:00'),

	 (2, 'Jane\'s Post 2', 'Body for Jane\'s Post 2', '2010-06-18
15:00:00', '2010-06-18 15:00:00'),

	 (2, 'Jane\'s Post 3', 'Body for Jane\'s Post 3', '2010-10-06
15:00:00', '2010-10-06 15:00:00');

5.	 We proceed now to create the required model. Create the model Post in a file named
post.php and place it in your app/models folder with the following contents:
<?php

class Post extends AppModel {

Pushing the Search

66

	 public $belongsTo = array('Blog');

}

?>

6.	 We will put all our example code in the index() method of a controller. Create a file
named posts_controller.php and place it in your app/controllers folder
with the following contents:
<?php

class PostsController extends AppController {

	 public function index() {

		 $this->set(compact('data'));

	 }

}

?>

7.	 Now, create a folder named posts and place it in your app/views folder. Inside this
newly created folder, create a file named index.ctp, with the following contents:

<?php debug($data); ?>

How to do it...
Grouping rows by a certain field is as simple as specifying the group setting when issuing a
find operation. For example, the following statement, while not exactly practical by itself,
shows how to use the setting:

$data = $this->Post->find('all', array(
	 'group' => array('Blog.id')
));

If we also want to obtain the number of rows for each grouped set, which in our case means
the number of posts per blog, we would do:

$data = $this->Post->find('all', array(
	 'fields' => array('COUNT(Post.id) AS total', 'Blog.*'),
	 'group' => array('Blog.id')
));

The preceding query will return the following data structure:

array(
	 array(
		 0 => array(
			 'total' => 4
),
		 'Blog' => array(

Chapter 3

67

			 'id' => 1,
			 'user_id' => 1,
			 'name' => 'John Doe\'s Blog'
)
),
	 array(
		 0 => array(
			 'total' => 3
),
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
)
)
)

Let us now make sure that every time we have a calculated field (which come in the index 0
of each resulting row), they become part of the resulting model, for easier readability. To do
so, we override the afterFind() method. If you don't have one already, create a file named
app_model.php in your app/ folder. Make sure your AppModel class includes the following
contents:

<?php
class AppModel extends Model {
	 public function afterFind($results, $primary = false) {
		 if (!empty($results)) {
			 foreach($results as $i => $row) {
				 if (!empty($row[0])) {
					 foreach($row[0] as $field => $value) {
						 if (!empty($row[$this->alias]
[$field])) {
							 $field = 'total_' .
$field;
						 }
						 $results[$i][$this->alias]
[$field] = $value;
					 }
					 unset($results[$i][0]);
				 }
			 }
		 }
		 return parent::afterFind($results, $primary);
	 }
}
?>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Pushing the Search

68

Whenever you override a model method, such as beforeFind() or
afterFind(), make sure you call the parent implementation by using the
parent keyword.

As a result, the previous query, which uses GROUP and COUNT, will now look like a much more
readable result set:

array(
	 array(
		 'Blog' => array(
			 'id' => 1,
			 'user_id' => 1,
			 'name' => 'John Doe\'s Blog'
),
		 'Post' => array(
			 'total' => 4
)
),
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(
			 'total' => 3
)
)
)

If we want to subdivide the post counts for each blog according to the month they were
created on, we would have to add another level of grouping:

$data = $this->Post->find('all', array(
	 'fields' => array(
		 'CONCAT(YEAR(Post.created), \'-\', MONTH(Post.created)) AS
period',
		 'COUNT(Post.id) AS total',
		 'Blog.*'
),
	 'group' => array('Blog.id', 'period')
));

Chapter 3

69

Considering our afterFind implementation, the preceding query would produce the
following results:

array(
	 array(
		 'Blog' => array(
			 'id' => 1,
			 'user_id' => 1,
			 'name' => 'John Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-4',
			 'total' => 4
)
),
	 array(
		 'Blog' => array(
			 'id' => 1,
			 'user_id' => 1,
			 'name' => 'John Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-5',
			 'total' => 1
)
),
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-10',
			 'total' => 1
)
),
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(

Pushing the Search

70

			 'period' => '2010-4',
			 'total' => 1
)
)
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-6',
			 'total' => 1
)
)
)

How it works...
We use the group find setting to specify what fields will be used for grouping the resulting
rows. That setting is given as an array, where each element is a field to group in. When we
specify more than one field, such as the last example in the recipe, grouping of rows occurs
in the given order of grouping fields.

Calculated fields, that is, expressions that result in a value (such as the COUNT(*) AS
total expression used throughout the recipe) are placed in the index 0 of each resulting
row, because they are not real fields defined in the model. Because of that, we overrode the
afterFind() method, executed after a result for a find operation is obtained, and with some
basic logic we make sure those calculated fields get included in the resulting row within a
much more readable index: the model name.

The last example in the recipe shows not only how to group on more than one field, but how
to properly use some SQL methods (such as MONTH and YEAR) with an alias, so we can easily
return the value of that expression and also use it to group or optionally order the rows.

See also
ff Using virtual fields

Chapter 3

71

Using virtual fields
In the recipe, Performing GROUP and COUNT queries, we learnt how to add computed SQL
expressions to a find operation. Some of these expressions may be needed regularly for a
model, introducing the need for virtual fields.

Using virtual fields, we get the resulting values of our SQL expressions as if they were real
fields of our models. They allow us to get the same results shown in the previous recipe in a
much more transparent way, without needing the override of afterFind.

Getting ready
We need some sample models and data to work with. Follow the Getting ready section of the
recipe, Performing GROUP and COUNT queries.

How to do it...
Open the Post model and add the virtualfields definition shown as follows:

<?php
class Post extends AppModel {
	 public $belongsTo = array('Blog');
	 public $virtualFields = array(
		 'period' => 'CONCAT(YEAR(Post.created), \'-\', MONTH(Post.
created))',
		 'total' => 'COUNT(*)'
);
}
?>

To obtain a count of all the posts per blog, grouped by the period they were created, we do:

$data = $this->Post->find('all', array(
	 'fields' => array(
		 'period',
		 'total',
		 'Blog.*'
),
	 'group' => array('Blog.id', 'period')
));

Pushing the Search

72

Using our sample data, the preceding query will result in the following array structure, which
is exactly the same result as the one obtained in the last example shown in the recipe
Performing GROUP and COUNT queries:

array(
	 array(
		 'Blog' => array(
			 'id' => 1,
			 'user_id' => 1,
			 'name' => 'John Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-4',
			 'total' => 4
)
),
	 array(
		 'Blog' => array(
			 'id' => 1,
			 'user_id' => 1,
			 'name' => 'John Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-5',
			 'total' => 1
)
),
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-10',
			 'total' => 1
)
),
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,

Chapter 3

73

			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-4',
			 'total' => 1
)
)
	 array(
		 'Blog' => array(
			 'id' => 2,
			 'user_id' => 2,
			 'name' => 'Jane Doe\'s Blog'
),
		 'Post' => array(
			 'period' => '2010-6',
			 'total' => 1
)
)
)

Virtual fields are always obtained when issuing a find operation on the model. The only real
way to avoid including them is specifying a list of fields to obtain in the find, and omitting the
virtual fields:

$data = $this->Post->find('all', array(
	 'fields' => array_keys($this->Post->schema())
));

The schema() model function returns the list of real fields in the model, with
information about each field, such as data type, and length.

We will now add a way for us to manage which virtual fields, if any, are returned. To do so,
we override the beforeFind() and afterFind() model methods. If you don't have one
already, create a file named app_model.php in your app/ folder. Make sure your AppModel
class includes the following contents:

<?php
class AppModel extends Model {
	 public function beforeFind($query) {
		 if (!empty($this->virtualFields)) {
			 $virtualFields = isset($query['virtualFields']) ?
				 $query['virtualFields'] :

Pushing the Search

74

				 array_keys($this->virtualFields);
			 if ($virtualFields !== true) {
				 $this->_backVirtualFields = $this-
>virtualFields;
				 $this->virtualFields = !empty($virtualFields)
?
					 array_intersect_key($this-
>virtualFields, array_flip((array) $virtualFields)) :
					 array();
			 }
		 }
		 return parent::beforeFind($query);
	 }

	 public function afterFind($results, $primary = false) {
		 if (!empty($this->_backVirtualFields)) {
			 $this->virtualFields = $this->_backVirtualFields;
		 }
		 return parent::afterFind($results, $primary);
	 }
}
?>

If we want to disable virtual fields when issuing a find operation, we can easily do so by
specifying the virtualFields find setting to false. We can also set it to the list of virtual
fields we want to include. For example, to only include the period virtual field, we do:

$person = $this->Post->find('all', array(
	 'virtualFields' => array('period')
));

How it works...
CakePHP treats virtual fields almost as if they were real model fields. They are not exactly
like real fields because we cannot specify a value for a virtual field when creating / editing a
model record. However, in regards to find operations, they are treated like any other field.

Virtual fields are included on every find operation performed against the model to which
they belong. However, there are times were we don't want or need certain virtual fields. This
is particularly important when we include virtual fields that depend on grouping expressions,
such as COUNT, as they affect the number of rows returned. In these cases, we want to be
able to specify what, or even if, virtual fields should be returned.

Chapter 3

75

To allow us to control virtual fields returned from a find operation, we add a new find setting
by overriding the beforeFind and afterFind model callbacks. In the beforeFind
callback, executed before a find operation is executed, we check for the existence of a
virtualFields setting. If such setting is defined, we use its value to check if virtual fields
should be returned or not.

Based on these setting values, we alter the real value of the model virtualFields property.
We backup its original value, and then restore it after the find operation is completed, that
is, in the afterFind callback.

See also
ff Performing GROUP and COUNT queries

Building queries with ad-hoc JOINs
CakePHP has a very easy way to handle bindings, and through the use of the Containable
behavior, as shown in several recipes in Chapter 2, Model Bindings, we have a lot of flexibility
when dealing with bindings.

However, there are times where we need to fall outside of a normal find operation and
perform queries that join several models, without using normal binding operations, to save
us some valuable queries. In this recipe, we will see how to specify JOIN operations when
performing a find on a model.

Getting ready
We need some sample models and data to work with. Follow the Getting ready section of
the recipe, Performing GROUP and COUNT queries.

To illustrate the difference between normal binding operations and what is shown in this
recipe, we need the Containable behavior. Create a file named app_model.php and
place it in your app/ folder, with the following contents. If you already have one, make sure
that, either you add the actsAs property shown as follows, or your actsAs property includes
Containable.

<?php
class AppModel extends Model {
	 public $actsAs = array('Containable');
}
?>

Pushing the Search

76

We also need the Blog model. Create a file named blog.php and place it in your app/
models folder with the following contents:

<?php
class Blog extends AppModel {
	 public $belongsTo = array('User');
}
?>

How to do it...
We want to obtain the first post with the Blog it belongs to, and the User information that
owns the Blog. Using Containable (refer to the recipe Limiting the bindings returned in a
find in Chapter 2, Model Bindings for more information), we do:

$post = $this->Post->find('first', array(
	 'contain' => array(
		 'Blog' => array(
			 'fields' => array('name'),
			 'User' => array('fields' => array('name'))
)
)
));

This operation is performed by CakePHP using three SQL queries:

SELECT `Post`.`id`, `Post`.`blog_id`, `Post`.`title`, `Post`.`body`,
`Post`.`created`, `Post`.`modified`, `Blog`.`name`, `Blog`.`user_id`
FROM `posts` AS `Post` LEFT JOIN `blogs` AS `Blog` ON (`Post`.`blog_
id` = `Blog`.`id`) WHERE 1 = 1 LIMIT 1;

SELECT `Blog`.`name`, `Blog`.`user_id` FROM `blogs` AS `Blog` WHERE
`Blog`.`id` = 1;

SELECT `User`.`name` FROM `users` AS `User` WHERE `User`.`id` = 1;

We can save some of these queries if we JOIN the relevant tables into one single operation.
We specify these JOIN statements using the appropriate join find setting:

$post = $this->Post->find('first', array(
	 'fields' => array(
		 'Post.id',
		 'Post.title',
		 'Blog.name',
		 'User.name'
),
	 'joins' => array(
		 array(
			 'type' => 'inner',

Chapter 3

77

			 'alias' => 'Blog',
			 'table' => $this->Post->Blog->table,
			 'conditions' => array(
				 'Blog.id = Post.blog_id'
)
),
		 array(
			 'type' => 'inner',
			 'alias' => 'User',
			 'table' => $this->Post->Blog->User->table,
			 'conditions' => array(
				 'User.id = Blog.user_id'
)
)
),
	 'recursive' => -1
));

The preceding statement will produce the following SQL query:

SELECT `Post`.`id`, `Post`.`blog_id`, `Post`.`title`, `Post`.`body`,
`Post`.`created`, `Post`.`modified` FROM `posts` AS `Post` inner JOIN
blogs AS `Blog` ON (`Blog`.`id` = `Post`.`blog_id`) inner JOIN users
AS `User` ON (`User`.`id` = `Blog`.`user_id`) WHERE 1 = 1 LIMIT 1
And would generate the following data structure:
array(
	 'Post' => array(
		 'id' => 1,
		 'title' => 'John\'s Post 1'
),
	 'Blog' => array(
		 'name' => 'John Doe\'s Blog'
),
	 'User' => array(
		 'name' => 'John Doe'
)
)

Pushing the Search

78

How it works...
The joins find setting allows us to define which JOIN statements to add to the generated
SQL query. We have full control when defining the operation, being able to change the type
(one of left, right, and inner), the table to which to join, the alias to use, and the
conditions used when joining.

We used this setting to join the Post model with two models: Blog, by means of its table and
required condition, and User, using its appropriate table and condition. As the Post model
belongsTo the Blog model, CakePHP will automatically try to do a LEFT JOIN with it,
unless we tell it not to.

We therefore set recursive to -1, forcing CakePHP to only use our defined JOIN. If the
recursive statement is removed, we would have to choose a different alias for our Blog
JOIN definition, as it would conflict with CakePHP's built-in binding.

See also
ff Adding Containable in Chapter 2, Model Bindings

Searching for all items that match
search terms

Finding records that match a set of search terms is almost a must-have on most web
applications. Even when there is a good number of more in-depth, complex search
solutions, sometimes a simple search is all we need.

This recipe shows how to implement a LIKE-based search to find records that match
some terms.

Getting ready
We need some sample models and data to work with. Follow the Getting ready section
of the recipe, Performing GROUP and COUNT queries.

How to do it...
If we want to find all posts that have the word Post 1 or the word Post 2, either in its title,
or post, we do:

$posts = $this->Post->find('all', array(
	 'fields' => array('Post.id', 'Post.title'),
	 'conditions' => array('or' => array(

Chapter 3

79

		 array('Post.title LIKE ?' => '%Post 1%'),
		 array('Post.body LIKE ?' => '%Post 1%'),
		 array('Post.title LIKE ?' => '%Post 2%'),
		 array('Post.body LIKE ?' => '%Post 2%'),
)),
	 'recursive' => -1
));

The preceding statement will produce the following result:

array(
	 'Post' => array(
		 'id' => 1,
		 'title' => 'John\'s Post 1'
),
	 'Post' => array(
		 'id' => 2,
		 'title' => 'John\'s Post 2'
),
	 'Post' => array(
		 'id' => 5,
		 'title' => 'Jane\'s Post 1'
),
	 'Post' => array(
		 'id' => 6,
		 'title' => 'Jane\'s Post 2'
)
)

How it works...
LIKE-based conditions are like any other model find condition, except that they are specified
in a special form: they become part of the key of the condition and use the character ? to tell
where the actual value will be inserted, the value being an actual LIKE expression. Therefore,
the following condition:

array('Post.title LIKE ?' => '%term%')

will be evaluated to SQL like so:

`Post`.`title` LIKE '%term%'

As the LIKE expression is specified as an array index, it's important to note that we need to
wrap each expression in an array of its own, avoiding the override of a previous expression.
To illustrate this, let us add another condition for the Post.title field.

Pushing the Search

80

array(

	 'Post.title LIKE ?' => '%term%',

	 'Post.title LIKE ?' => '%anotherTerm%'

)

This would be translated to the following SQL expression:

`Post`.`title` LIKE '%anotherTerm%'

Naturally, the second index is overriding the first, because they are both the same. We
therefore have to wrap both expressions in an array, to avoid overriding the already used
indexes:

array(

	 array('Post.title LIKE ?' => '%term%'),

	 array('Post.title LIKE ?' => '%anotherTerm%')

)

which would be translated to the following SQL statement:

`Post`.`title` LIKE '%term%' OR `Post`.`title` LIKE '%anotherTerm%'

See also
ff Implementing a custom find type

Implementing a custom find type
The recipe, Searching for all items that match search terms, gives us a great starting point to
create a custom find type. Custom find types allow us to extend the basic find types any model
has, allowing our code to become more readable and extensible.

This recipe shows how to create a custom find type to allow the Post model to be searched
against a set of terms, thus extending the functionality shown in the previous recipe.

Getting ready
We need some sample models and data to work with. Follow the Getting ready section of the
recipe, Performing GROUP and COUNT queries.

Chapter 3

81

How to do it...
1.	 Open the post.php file and add the search find type to the list of find methods

using the _findMethods property, together with the actual implementation of the
_findSearch() method.
<?php

class Post extends AppModel {

	 public $belongsTo = array('Blog');

	 public $_findMethods = array('search' => true);

	 protected function _findSearch($state, $query, $results =
array()) {

		 if ($state == 'before') {

			 if (!empty($query['terms'])) {

				 $fields = array('title', 'body');

				 $conditions = array();

				 foreach ((array) $query['terms'] as
$term) {

					 foreach ($fields as $field) {

						 $model = $this->alias;

						 if (strpos($field, '.')
!== false) {

							 list($model, $field)
= explode('.', $field);

						 }

						 $conditions[] = array(

							 $model . '.' .
$field . ' LIKE ?' => '%'.$term.'%'

);

					 }

				 }

				 if (empty($query['fields'])) {

					 $query['fields'] = array('Post.
title', 'Post.body');

				 }

				 $query['conditions'][] = array('or' =>
$conditions);

			 }

			 return array_diff_key($query,
array('terms'=>null));

		 }

Pushing the Search

82

		 return $results;

	 }

}

?>

2.	 We can now use these custom find types by specifying the list of terms to search with
using the search find setting:
$posts = $this->Post->find('search', array(

	 'terms' => array(

		 'Post 1',

		 'Post 2'

),

	 'recursive' => -1

));

3.	 If we now browse to http://localhost/posts, we get the id and title fields
for four posts, as it is partially shown in the following screenshot:

4.	 Let us now also allow the execution of count operations for custom find types.
Because we want a generic solution, we will add this to AppModel. Open the file
app_model.php in your app/ folder (create it if you don't have one), and override
the find() method as shown below:
<?php

class AppModel extends Model {

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 3

83

	 public function find($conditions=null, $fields=array(),
$order=null, $recursive=null) {

		 if (

			 is_string($conditions) && $conditions=='count'
&&

			 is_array($fields) && !empty($fields['type'])
&&

			 array_key_exists($fields['type'],$this->_
findMethods)

) {

			 $fields['operation'] = 'count';

			 return parent::find($fields['type'], array_
diff_key(

				 $fields,

				 array('type'=>null)

));

		 }

		 return parent::find($conditions, $fields, $order,
$recursive);

	 }

}

?>

5.	 Now edit your app/models/post.php file and make the following changes to the
_findSearch() method:
protected function _findSearch($state, $query, $results = array())
{

	 if ($state == 'before') {

		 if (!empty($query['terms'])) {

			 $fields = array('title', 'body');

			 $conditions = array();

			 foreach ((array) $query['terms'] as $term) {

				 foreach ($fields as $field) {

					 $model = $this->alias;

					 if (strpos($field, '.') !==
false) {

						 list($model, $field) =
explode('.', $field);

					 }

					 $conditions[] = array(

						 $model . '.' . $field . '
LIKE ?' => '%'.$term.'%'

);

Pushing the Search

84

				 }

			 }

			 if (empty($query['fields'])) {

				 $query['fields'] = array('Post.title',
'Post.body');

			 }

			 if (!empty($query['operation']) &&
$query['operation'] == 'count') {

				 $query['fields'] = 'COUNT(*) AS total';

			 }

			 $query['conditions'][] = array('or' =>
$conditions);

		 }

		 return array_diff_key($query, array('terms'=>null));

	 } elseif (

			 $state == 'after' &&
!empty($query['operation']) &&

			 $query['operation'] == 'count'

) {

		 return (!empty($results[0][0]['total']) ? $results[0]
[0]['total'] : 0);

	 }

	 return $results;

}

6.	 If we wanted to obtain the number of posts that match a set of terms, we would do:

$count = $this->Post->find('count', array(

	 'type' => 'search',

	 'terms' => array(

		 'Post 1',

		 'Post 2'

)

));

Which would correctly return 4.

Chapter 3

85

How it works...
Custom find types are defined in the model _findMethods property. We add types by adding
the name of the find type to the property as its index, and setting true as its value in the
model that contains the find type.

The method responsible for dealing with the actual find type is named using the following
syntax: _findType(), where Type is the find type name, with its first case in uppercase.
For a find type of name popular, the method would be named _findPopular().

Every find type method receives three arguments:

ff state: The state at which the find operation is currently on. This can be before
(used right before the find operation is to be executed), or after (executed after the
find operation is finished, and the perfect place to modify the obtained results.) The
before state is where we change the query parameters to meet our needs.

ff query: The data for the query, containing typical find settings (such as fields or
conditions), and any extra settings specified in the find operation (in our case,
terms).

ff results: Only applicable when the state is set to after, and includes the result of
the find operation.

When the state of the find is set to before, the custom find type implementation needs to
return the query, as an array of find settings. Therefore, in our implementation, we look for
a custom find setting named terms. If there are terms specified, we use them to add LIKE-
based conditions to a fixed list of fields. Once we are done, we return the modified query.

When the state is set to after, the implementation needs to return the results. This
is the opportunity to modify the resulting rows, if needed, before returning them. In our
implementation, we simply return them as they were sent to us.

The last part of the recipe shows us how to add count support for our custom find types. This
is something that CakePHP does not offer out of the box, so we implement our own solution.
We do so by overriding the find() method and checking to make sure a set of conditions
are met:

1.	 The find operation being executed is set to count

2.	 There's a type setting specified in the query

3.	 The type setting is in fact a valid custom find type

When these conditions are met, we add a new query parameter named operation, setting
it to count, and we then call the parent find() implementation using the custom find type.
This way, our find implementation can check for the operation find setting, and when it
is set to count, it forces the fields find setting to COUNT(*) in the before state, and
correctly gets the result of the count operation in the after state.

Pushing the Search

86

See also
ff Paginating a custom find type

ff Searching for all items that match search terms

Paginating a custom find type
The recipe, Implementing a custom find type, showed us the power of extending the built-in
model find types, including support to use the implemented custom types for fetching records
or counting them.

Now that we know how to fetch and count custom find types, we can easily paginate a set
of resulting rows. This recipe shows how to use CakePHP's built-in pagination support to
paginate a set of rows that come as a result of a custom find type.

Getting ready
We need some sample models and data to work with, and we need the override of the
find() method in AppModel to allow count operations on custom find types. Therefore,
make sure you follow the entire recipe, Implementing a custom find type, including its Getting
ready section.

How to do it...
1.	 Create a file named posts_controller.php in your app/controllers folder.

If you already have one, make sure its index() method is as follows:
<?php

class PostsController extends AppController {

	 public function index() {

		 $this->paginate['Post'] = array(

			 'search',

			 'fields' => array(

				 'Post.id',

				 'Post.title'

),

			 'terms' => array(

				 'Post 1',

				 'Post 2'

),

			 'limit' => 3

);

Chapter 3

87

		 $posts = $this->paginate('Post');

		 $this->set(compact('posts'));

	 }

}

?>

2.	 Create the view for the index action. If you don't have a folder named posts in
your app/views folder, create it. Next, create a file named index.ctp in your
app/views folder with the following contents:
<p>
<?php echo $this->Paginator->prev(); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(); ?>
</p>

<?php foreach($posts as $post) { ?>
	 #<?php echo $post['Post']['id']; ?>: <?php echo
$post['Post']['title']; ?>
<?php } ?>

3.	 If we now browse to http://localhost/posts, we see a paginated list of
matching posts, showing the first three posts out of two pages, as shown in the
following screenshot:

Pushing the Search

88

How it works...
To paginate a custom find type, we need to specify the name of the find type as the value for
index 0 of the pagination settings (or the first value if no index is defined). We can then pass
any custom find settings as part of the pagination settings, as shown in the following code
snippet:

$this->paginate['Post'] = array(
	 'search',
	 'terms' => array(
		 'Post 1',
		 'Post 2'
),
	 'limit' => 3
);

CakePHP's paginate() method will first issue a count (specifying the find type name in
the type find setting) to get the total number of rows, and then a find operation using the
custom find type to get the rows for the current page.

See also
ff Implementing AJAX based pagination

Implementing AJAX based pagination
The previous recipe, Paginating a custom find type, showed us how to paginate a custom find
type. Each page link changes the browser location, forcing the reload of all the elements in
the page.

This recipe allows us to use AJAX (using the jQuery javascript library) to only load
what is really needed, so that every time a page is changed, only the set of rows is changed
without having to load a whole new page.

Getting ready
We need some sample models and data to work with, and we need a fully working pagination
of a custom find type. Follow the entire recipe, Paginating a custom find type, including its
Getting ready section.

Chapter 3

89

How to do it...
1.	 We start by adding the jQuery javascript library to our layout. If you don't have

one already, create a file named default.ctp in your app/views/layouts
directory. Make sure you add the link to the jQuery library (here we are using the
Google-hosted one), the place holder for a loading message (to be shown when an
AJAX connection is in progress), and that you wrap the view content with a DIV with
an ID set to content.
<head>

	 <title><?php echo $title_for_layout; ?></title>

	 <?php echo $this->Html->script('http://ajax.googleapis.com/
ajax/libs/jquery/1.4.2/jquery.min.js'); ?>

</head>

<body>

<div id="main">

	 <div id="loading" style="display: none; float:
right;">Loading...</div>

	 <div id="content">

		 <?php echo $content_for_layout; ?>

	 </div>

</div>

</body>

</html>

2.	 Open the PostsController and add the RequestHandler component, and the
Jquery helper engine (the rest of the controller remains unmodified:
<?php

class PostsController extends AppController {

	 public $components = array('RequestHandler');

	 public $helpers = array('Js' => 'Jquery');

	 public function index() {

		 $this->paginate['Post'] = array(

			 'search',

			 'terms' => array(

				 'Post 1',

				 'Post 2'

),

			 'limit' => 3

);

		 $posts = $this->paginate('Post');

		 $this->set(compact('posts'));

	 }

Pushing the Search

90

}

?>

3.	 Now let the Paginator helper know that we are using AJAX-based pagination. Edit
the view file app/views/posts/index.ctp and add the highlighted lines:
<?php

$this->Paginator->options(array(

	 'evalScripts' => true,

	 'update' => '#content',

	 'before' => $this->Js->get('#loading')->effect('fadeIn',
array('speed'=>'fast')),

	 'complete' => $this->Js->get('#loading')->effect('fadeOut',
array('speed'=>'fast')),

));

?>

<p>

<?php echo $this->Paginator->prev(); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(); ?>

</p>

<?php foreach($posts as $post) { ?>

	 #<?php echo $post['Post']['id']; ?>: <?php echo
$post['Post']['title']; ?>

<?php } ?>

<?php echo $this->Js->writeBuffer(); ?>

How it works...
When the update setting is specified to the options() method of the Paginator helper,
the Paginator knows it is dealing with an AJAX-based pagination. The update setting points
to the ID of the DOM element holding the content that changes when each pagination link
is clicked. In our case, that DOM element is a DIV with an ID set to content, defined in the
layout.

Chapter 3

91

The other option we specify to the Paginator helper is evalScripts, which tells the
helper to evaluate any Javascript code that is being obtained as a result of an AJAX request.
That way, when a page with results is being obtained through AJAX, the Javascript code that
is automatically added by the JQuery engine will be executed. Similarly, we need to print out
this generated code, and we do so by calling the writeBuffer() method at the end of the
index.ctp view.

The other two options we use are before, and complete, which are sent directly to the AJAX
operation. The before option, executed before an AJAX request is made, is an ideal place
for us to show the loading DIV. The complete option, executed after an AJAX operation is
completed, is utilized to hide the loading DIV.

We could also specify Javascript code to the before and complete options, rather than
utilizing the helper methods provided by the jQuery engine. The same effect could be achieved
by changing the options as follows:

<?php
$this->Paginator->options(array(
	 'evalScripts' => true,
	 'update' => '#content',
	 'before' => '$("#loading").fadeIn("fast");',
	 'complete' => '$("#loading").fadeOut("fast");'
));
?>

4
Validation and

Behaviors

In this chapter, we will cover:

ff Adding multiple validation rules

ff Creating a custom validation rule

ff Using callbacks in behaviors

ff Using behaviors to add new fields for saving

ff Using the Sluggable behavior

ff Geocoding addresses with the Geocodable behavior

Introduction
This chapter deals with two aspects of CakePHP models that are fundamental to most
applications: validation, and behaviors.

When we are saving information to a data source, such as a database, CakePHP will
automatically ensure that the data is quoted in order to prevent attacks, SQL injection being
the most common one. If we also need to ensure that the data follows a certain format, for
example, that a phone number is valid, we use validation rules.

There are also times where we need to do more than just validate the data we are working
with. In some cases, we need to set values for fields that the end user can't specify but are
part of our application logic. CakePHP's behaviors allow us to extend the functionality provided
by a model, using callbacks to manipulate the data before it's saved, or after it's fetched.

Validation and Behaviors

94

The third recipe shows us how to use model callbacks (such as beforeFind and
afterFind) in behaviors, while the fourth recipe shows how to use behaviors to add
additional field values when a save operation is being undertaken.

The last two recipes in this chapter give examples on how to use the Sluggable behavior
for creating SEO friendly URLs, and the Geocodable behavior to add geocoding support
to an Address model.

Adding multiple validation rules
This recipe shows how to not only use some basic validation rules provided by CakePHP,
but also how to use more than one of these rules per field.

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
profiles using the following SQL statement:

CREATE TABLE `profiles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `email` VARCHAR(255) NOT NULL,
 `name` VARCHAR(255) default NULL,
 `twitter` VARCHAR(255) default NULL,
 PRIMARY KEY(`id`)
);

We proceed now to create the required model. Create the model Profile in a file named
profile.php and place it in your app/models folder with the following contents:

<?php
class Profile extends AppModel {
 public $validate = array(
 'email' => array('rule' => 'notEmpty'),
 'name' => array('rule' => 'notEmpty')
);
}
?>

Create its appropriate controller ProfilesController in a file named profiles_
controller.php and place it in your app/controllers folder with the following contents:

<?php
class ProfilesController extends AppController {
 public function add() {
 if (!empty($this->data)) {

Chapter 4

95

 $this->Profile->create();
 if ($this->Profile->save($this->data)) {
 $this->Session->setFlash('Profile created');
 $this->redirect('/');
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 }
 }
}
?>

Create a folder named profiles in your app/views folder. Create the view to hold the
form in a file named add.ctp, and place it in your app/views/profiles folder, with
the following contents:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'email',
 'name',
 'twitter'
));
echo $this->Form->end('Create');
?>

How to do it...
We already have basic validation rules set for the email and name fields, which guarantee
that none of these fields can be empty. We now want to add another validation rule to ensure
that the email entered is always a valid e-mail address. Edit the Profile model and change
the defined validation rule as follows:

class Profile extends AppModel {
 public $validate = array(
 'email' => array(
 'valid' => array(
 'rule' => 'email',
 'message' => 'The email entered is not a valid email
address'
),
 'required' => array(
 'rule' => 'notEmpty',
 'message' => 'Please enter an email'
)

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Validation and Behaviors

96

),
 'name' => array('rule' => 'notEmpty')
);
}

If we now browse to http://localhost/profiles/add and click the Create button
without entering any information, we should see the customized error message for the
email field and the default error message for the name field
as shown in the following screenshot:

If we instead specify an invalid e-mail address, the validation message should change to the
one specified in the view.

How it works...
Each field specified in the model's validate property can contain any number of validation
rules. When we specify more than one rule, we wrap them in an array, indexing it with
a descriptive key to help us identify which rule failed. Therefore, we chose to index the
notEmpty rule with a required key, and the email rule with a valid key.

Chapter 4

97

When we specify more than one validation rule, CakePHP will evaluate each rule in the order
we used when adding them to the validate property. If more than one validation rule fails
for a field, the last rule that failed is the one that is used to trigger the error message. In our
case, the first rule is valid, and the second one required. Therefore if both rules fail, the
field is set to have failed the required rule.

If we wanted to ensure that a particular rule is executed after all others have, we use the
last rule setting. Setting it to true will ensure that a particular rule is executed after all
others. In our example, we could have defined the required validation first in the list of
rules for the email field and set its last setting to true, which would have the same
result as defining the required rule after all others.

There's more...
In this recipe, we used the model to specify what error message is shown for each failing rule.
We could instead choose to do it in the view.

Using the indexes that identify each rule, we can specify which error message should be
shown whenever one of these rules fails validation. We do so by setting the error option in
the field definition to an array of error messages, each indexed by a matching validation rule
key (in our case, one of required and valid for the email field).

Edit the app/views/profiles/add.ctp file and change the email field definition
as follows:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'email' => array(
 'error' => array(
 'required' => 'Please enter an email',
 'valid' => 'The email entered is not a valid email address'
)
),
 'name',
 'twitter'
));
echo $this->Form->end('Create');
?>

See also
ff Internationalizing model validation messages in the Internationalizing

applications chapter.

Validation and Behaviors

98

Creating a custom validation rule
CakePHP provides a handful of validation rules out of the box, which together covers the need
for most applications. The following table lists the built-in validation rules (found in CakePHP's
Validation class.)

Rule Purpose
_alphaNumeric Checks that the value contains only integers or letters.
_between Checks that the string length of the value is within the specified range.
_blank Succeeds if the value is empty, or consists of only spaces (whitespaces,

tabs, newlines, and so on).
_boolean Checks if value can be interpreted as a Boolean.
_cc Validates a credit card number.
_comparison Compares the value to a given value, using the specified operator.
_custom Validates the value using a custom regular expression.
_date Validates the value as a date, using the given format or regular

expression.
_decimal Succeeds if value is a valid decimal number.
_email Validates an e-mail address.
_equalTo Succeeds if the value is equal to the given value.
_extension Interprets the value as a file name and checks for the given extension.
_inList Checks that the value is within a list of allowed values.
_ip Validates an IP address.
_maxLength Checks that the length of the string value does not exceed a certain

number of characters.
_minLength Similar to maxLength, but ensures that the string value has at least the

given number of characters.
_money Checks that the value is a valid monetary amount.
_multiple Validates a multiple select against a set of options.
_numeric Succeeds if the value is numeric.
_phone Checks a phone number.
_postal Validates a postal code.
_range Succeeds if the value is within a numeric range.
_ssn Checks a social security/national identity number.
_time Validates the value as a time (24 hours format).
_uuid Validates the value as a UUID.
_url Succeeds if the value is a valid URL.

Chapter 4

99

However, there are times where we require a custom validation, or where we need to change
the way an existing validation works.

In this recipe, we will learn how to create our custom validation rule to check the validity of a
given twitter user name.

Getting ready
We need some sample models to work with. Follow the Getting ready section of the recipe
Adding multiple validation rules.

How to do it...
Edit the Profile model by opening your app/models/profile.php file and make the
following changes:

class Profile extends AppModel {
 public $validate = array(
 'email' => array('rule' => 'notEmpty'),
 'name' => array('rule' => 'notEmpty'),
 'twitter' => array(
 'rule' => 'validateTwitter',
 'allowEmpty' => true,
 'message' => 'This twitter account is not valid'
)
);
 protected static $httpSocket;

 protected function validateTwitter($data) {
 if (!isset(self::$httpSocket)) {
 App::import('Core', 'HttpSocket');
 self::$httpSocket = new HttpSocket();
 }

 $value = current($data);
 self::$httpSocket->get('http://twitter.com/status/user_
timeline/' . $value . '.json?count=1');
 return (self::$httpSocket->response['status']['code'] != 404);
 }
}

Validation and Behaviors

100

If we now browse to http://localhost/profiles/add and click the Create button
after entering a Nonexistent Twitter account, we should see the error message for the
twitter field shown in the following screenshot:

If we instead specify a valid account, or leave it empty, there will be no error message
displayed for the twitter field.

How it works...
When we set the rule validate option to the name of a method that is available in the model
(validateTwitter() in our example), CakePHP calls that method when the field needs to
be validated.

The method validateTwitter(), like any custom validation method, receives an array in
its first argument. This array is indexed by the field name, and the value is set to the value
entered by the user. In the example shown in the previous screenshot, the data argument
comes in as:

array('twitter' => 'nonexistingtwitteraccount')

The validation method needs to return a Boolean value to indicate success: true if the
validation succeeded, false if it failed. If we don't set the allowEmpty option to true,
then the validation method will also be called when the field value is empty.

Chapter 4

101

If the custom validation method returns a string, the field is marked to have
failed validation, and the returned string is used as the error message.

The method validateTwitter() first checks to see if an instance of the CakePHP
HttpSocket class is already set. We use a static instance to make sure the class is
initialized only once, thus avoiding unnecessary processing if the method is called several
times for the same process.

Once we have the HttpSocket instance, we get the value to be validated (first value set in
the array, as shown above), and we use it to fetch the contents of a twitter URL.

We could have used an http://twitter.com/$account URL, which
returns the HTML containing the user latest tweets. However we chose to use
a JSON request, and limit the number of tweets to 1, to reduce bandwidth
usage from our server

This publicly available Twitter URL is used to get the timeline for a Twitter account, which
returns an HTTP status of 404 when the account is not registered with Twitter. If the status
is indeed 404, we consider the Twitter account to be nonexistent, thus failing validation. Any
other status code will result in a successful validation.

There's more...
Some custom validation methods need more than just the value to be validated to be able
to tell if validation succeeded. Fortunately, CakePHP not only sends us an array of options
utilized to perform the validation in the second argument, but also provides an easy way to
add parameters to our validation methods. Using our example, we now want to be able to
provide a different URL to use when checking the Twitter account.

To utilize the array of options, edit the Profile model by opening your app/models/
profile.php file and make the following changes:

class Profile extends AppModel {
 public $validate = array(
 'email' => array('rule' => 'notEmpty'),
 'name' => array('rule' => 'notEmpty'),
 'twitter' => array(
 'rule' => 'validateTwitter',
 'allowEmpty' => true,
 'url' => 'http://twitter.com/%TWITTER%'
)
);

Validation and Behaviors

102

 protected function validateTwitter($data, $options) {
 static $httpSocket;
 if (!isset($httpSocket)) {
 App::import('Core', 'HttpSocket');
 $httpSocket = new HttpSocket();
 }

 $options = array_merge(array(
 'url' => 'http://twitter.com/status/user_timeline/%TWITTER%.
json?count=1'
), $options);
 $value = current($data);
 $httpSocket->get(str_ireplace('%TWITTER%', $value,
$options['url']));
 return ($httpSocket->response['status']['code'] != 404);
 }
}

If instead of utilizing the array of options, we want to utilize the ability to use extra parameters,
we simply add arguments to our validation method, and pass those argument values as
elements of the validate definition. To do so, edit the Profile model by opening your
app/models/profile.php file and make the following changes:

class Profile extends AppModel {
 public $validate = array(
 'email' => array('rule' => 'notEmpty'),
 'name' => array('rule' => 'notEmpty'),
 'twitter' => array(
 'rule' => array(
 'validateTwitter',
 'http://twitter.com/%TWITTER%'
),
 'allowEmpty' => true
)
);
 protected static $httpSocket;

 protected function validateTwitter($data, $url = 'http://twitter.
com/status/user_timeline/%TWITTER%.json?count=1') {
 if (!isset(self::$httpSocket)) {
 App::import('Core', 'HttpSocket');
 self::$httpSocket = new HttpSocket();
 }

 $value = current($data);
 self::$httpSocket->get(str_ireplace('%TWITTER%', $value, $url));
 return (self::$httpSocket->response['status']['code'] != 404);
 }
}

Chapter 4

103

See also
ff Adding multiple validation rules

Using callbacks in behaviors
CakePHP behaviors are a great way to not only extend model functionality, but also share that
functionality across different models, and applications. Using behaviors, we can keep our
model code concise and to the point, extracting code that may not be directly related to our
business logic, but still affect how our models behave.

In this recipe we will learn how to use model callbacks to automatically retrieve each profile's
latest tweets, and how to add a custom validation method to the behavior.

Getting ready
We need some sample models to work with. Follow the Getting ready section of the recipe
Adding multiple validation rules.

We will also need a method to list all profiles. Edit your app/controllers/profiles_
controller.php file and add the following index() method to the ProfilesController
class:

public function index() {
 $profiles = $this->Profile->find('all');
 $this->set(compact('profiles'));
}

Create the respective view in a file named app/views/profiles/index.ctp, with the
following contents:

<?php foreach($profiles as $profile) { ?>
<p>
 <?php echo $this->Html->link(
 $profile['Profile']['twitter'],
 'http://twitter.com/' . $profile['Profile']['twitter'],
 array('title' => $profile['Profile']['twitter'])
); ?>
</p>
<?php } ?>

Validation and Behaviors

104

How to do it...
1.	 Create a class named TwitterAccountBehavior in a file named twitter_

account.php and place it in your app/models/behaviors folder, with the
following contents:
<?php
App::import('Core', 'HttpSocket');

class TwitterAccountBehavior extends ModelBehavior {
 protected static $httpSocket;

 public function setup($model, $config = array()) {
 parent::setup($model, $config);
 $this->settings[$model->alias] = array_merge(array(
 'field' => 'twitter'
), $config);
 }

 protected function timeline($twitter, $count = 10,
$returnStatus = false) {
 if (!isset(self::$httpSocket)) {
 self::$httpSocket = new HttpSocket();
 }

 $content = self::$httpSocket->get('http://twitter.com/
status/user_timeline/' . $twitter . '.json?count=' . $count);
 $status = self::$httpSocket->response['status']['code'];
 if (!empty($content)) {
 $content = json_decode($content);
 }

 if ($returnStatus) {
 return compact('status', 'content');
 }
 return $content;
 }
}
?>

Chapter 4

105

2.	 Now that we have created the behavior with its setup() method implemented
and a helper timeline() method to obtain tweets from a Twitter account, we
can proceed to add the required validation.

Add the following custom validation method to the TwitterAccountBehavior
class:
public function validateTwitter($model, $data) {
 $field = $this->settings[$model->alias]['field'];
 if (!empty($data[$field])) {
 $value = $data[$field];
 $result = $this->timeline($value, 1, true);
 if ($result['status'] == 404) {
 $result = false;
 }
 }
 return $result;
}

3.	 Let us now attach the behavior to the Profile model, and add the validation for the
twitter field. Open your app/models/profile.php file and add the following
actsAs property and the twitter field validation:
<?php
class Profile extends AppModel {

 public $actsAs = array('TwitterAccount');
 public $validate = array(
 'email' => array('rule' => 'notEmpty'),
 'name' => array('rule' => 'notEmpty'),

 'twitter' => array(
 'rule' => 'validateTwitter',
 'allowEmpty' => true,
 'message' => 'This twitter account is not valid'
)

);
}
?>

Validation and Behaviors

106

4.	 Just like the recipe Creating a custom validation rule, entering a nonexistant
Twitter account should display the error message for the twitter field shown
in the following screenshot:

5.	 Let us now use other callbacks to get a certain number of tweets for each profile after
a find operation is performed. Add the following beforeFind() and afterFind()
methods to the TwitterAccountBehavior class:
public function beforeFind($model, $query) {
 $this->settings[$model->alias]['tweets'] =
!isset($query['tweets']) ? true : $query['tweets'];
 return parent::beforeFind($model, $query);
}

public function afterFind($model, $results, $primary) {
 $rows = parent::afterFind($model, $results, $primary);
 if (!is_null($rows)) {
 $results = $rows;
 }
 if (!empty($this->settings[$model->alias]['tweets'])) {
 $field = $this->settings[$model->alias]['field'];
 $count = is_int($this->settings[$model->alias]['tweets']) ?
 $this->settings[$model->alias]['tweets'] :
 10;
 foreach($results as $i => $result) {

Chapter 4

107

 $twitter = $result[$model->alias][$field];
 $tweets = array();
 if (!empty($result[$model->alias][$field])) {
 $result = $this->timeline($twitter, $count);
 if (!empty($result) && is_array($result)) {
 foreach($result as $tweet) {
 $tweets[] = array(
 'created' => date('Y-m-d H:i:s',
strtotime($tweet->created_at)),
 'source' => $tweet->source,
 'user' => $tweet->user->screen_name,
 'text' => $tweet->text
);
 }
 }
 }
 $results[$i]['Tweet'] = $tweets;
 }
 }
 return $results;
}

6.	 Edit the app/views/profiles/index.ctp view and make the following changes:
<?php foreach($profiles as $profile) { ?>
<p>
 <?php echo $this->Html->link(
 $profile['Profile']['twitter'],
 'http://twitter.com/' . $profile['Profile']['twitter'],
 array('title' => $profile['Profile']['twitter'])
); ?>

 <?php if (!empty($profile['Tweet'])) { ?>

 <?php foreach($profile['Tweet'] as $tweet) { ?>

 <code><?php echo $tweet['text']; ?></code>
 from <?php echo $tweet['source']; ?>
 on <?php echo $tweet['created']; ?>

 <?php } ?>

 <?php } ?>

</p>
<?php } ?>

Validation and Behaviors

108

After adding a valid Twitter account, browsing to http://localhost/profiles would
generate a listing, such as the one shown in the following screenshot:

How it works...
We started with the skeleton for our TwitterAccountBehavior, implementing the
setup() method, called automatically by CakePHP whenever the behavior is attached to a
model, and the timeline() method, which is nothing more than the validateTwitter()
method shown in the recipe Create a custom validation rule optimized for reutilization.

The beforeFind callback is triggered by CakePHP whenever a find operation is about to be
executed, and we used it to check the existence of the custom tweets find setting. We use
this setting to allow the developer to either disable the fetch of tweets, by setting it to false:

$this->Profile->find('all', array('tweets' => false));

or specify how many tweets should be obtained. For example, if we wanted to obtain only the
latest tweet, we would do:

$this->Profile->find('all', array('tweets' => 1));

The afterFind callback is executed after a find operation is executed, and gives us an
opportunity to modify the results. Therefore we check to make sure we are told to obtain the
tweets, and if so we use the timeline() method to obtain the specified number of tweets.
We then append each tweet's basic information into the index Tweet for each profile.

Chapter 4

109

There's more...
One thing that is clear in our implementation is that, unless we set the tweets find option to
false; we are obtaining tweets for each profile record on every find operation performed
against the Profile model. Adding caching support would greatly improve the performance
of our find operations, since we would only obtain the tweets when the cached information is
no longer valid.

More information about caching through CakePHP's Cache class can be
obtained at http://book.cakephp.org/view/1511/Cache.

We will allow the developer to specify what cache configuration to use when caching tweets.
Open the TwitterAccountBehavior class and make the following modifications to its
setup() method:

public function setup($model, $config = array()) {
 parent::setup($model, $config);
 $this->settings[$model->alias] = array_merge(array(
 'field' => 'twitter',
 'cache' => 'default'
), $config);
}

While editing the TwitterAccountBehavior class, make the following modifications to its
afterFind() method:

public function afterFind($model, $results, $primary) {
 $rows = parent::afterFind($model, $results, $primary);
 if (!is_null($rows)) {
 $results = $rows;
 }
 if (!empty($this->settings[$model->alias]['tweets'])) {
 $field = $this->settings[$model->alias]['field'];
 $count = is_int($this->settings[$model->alias]['tweets']) ?
 $this->settings[$model->alias]['tweets'] :
 10;
 $cacheConfig = $this->settings[$model->alias]['cache'];
 foreach($results as $i => $result) {
 $twitter = $result[$model->alias][$field];
 $tweets = array();
 if (!empty($cacheConfig)) {
 $tweets = Cache::read('tweets_' . $twitter, $cacheConfig);
 }
 if (empty($tweets) && !empty($result[$model->alias][$field]))
{

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Validation and Behaviors

110

 $result = $this->timeline($twitter, $count);
 if (!empty($result) && is_array($result)) {
 foreach($result as $tweet) {
 $tweets[] = array(
 'created' => date('Y-m-d H:i:s',
strtotime($tweet->created_at)),
 'source' => $tweet->source,
 'user' => $tweet->user->screen_name,
 'text' => $tweet->text
);
 }
 }
 Cache::write('tweets_' . $twitter, $tweets, $cacheConfig);
 }
 $results[$i]['Tweet'] = $tweets;
 }
 }
 return $results;
}

Finally, add the following beforeDelete and afterDelete callback implementations:

public function beforeDelete($model, $cascade = true) {
 $field = $this->settings[$model->alias]['field'];
 $this->settings[$model->alias]['delete'] = $model->field($field,
array(
 $model->primaryKey => $model->id
));
 return parent::beforeDelete($cascade);
}

public function afterDelete($model) {
 if (!empty($this->settings[$model->alias]['delete'])) {
 $cacheConfig = $this->settings[$model->alias]['cache'];
 $twitter = $this->settings[$model->alias]['delete'];
 Cache::delete('tweets_' . $twitter, $cacheConfig);
 }
 return parent::afterDelete($model);
}

Using beforeDelete() we are storing the tweet that is to be deleted. If indeed the profile
was deleted, the afterDelete() method will remove its cached tweets.

Chapter 4

111

See also
ff Adding multiple validation rules

ff Create a custom validation rule

ff Using behaviors to add new fields for saving

Using behaviors to add new fields for saving
In the recipe Using callbacks in behaviors we learnt how to implement different model callbacks
to perform some tasks automatically. In this recipe we will continue that process and we will
learn how to automatically save data that may not be provided in a save operation.

We will use the Twitter example we have been using in this chapter, so that when a profile
is saved, its Twitter URL and its last tweet are saved when creating a new record, or when
updating an existing one.

Getting ready
We need a working TwitterAccountBehavior together with its controllers, models, and
views. Follow the recipe Using callbacks in behaviors (there's no need to enable caching in
the behavior, so you can omit the There's more section).

Add two fields to the profiles table, url and last_tweet, by issuing the following SQL
command:

ALTER TABLE `profiles`
 ADD COLUMN `url` VARCHAR(255) default NULL,
 ADD COLUMN `last_tweet` VARCHAR(140) default NULL;

How to do it...
1.	 Edit your app/models/behaviors/twitter_account.php file and add the

following beforeSave implementation to the TwitterAccountBehavior class:
public function beforeSave($model) {
 $field = $this->settings[$model->alias]['field'];
 $twitter = null;
 if (!array_key_exists($field, $model->data[$model->alias]) &&
$model->exists()) {
 $twitter = $model->field($field, array(
 $model->primaryKey => $model->id
));

Validation and Behaviors

112

 } elseif (array_key_exists($field, $model->data[$model-
>alias])) {
 $twitter = $model->data[$model->alias][$field];
 }

 $data = array(
 'url' => !empty($twitter) ? 'http://twitter.com/' . $twitter
: null,
 'last_tweet' => null
);
 if (!empty($twitter)) {
 $tweets = $this->timeline($twitter, 1);
 if (!empty($tweets) && is_array($tweets)) {
 $data['last_tweet'] = $tweets[0]->text;
 }
 }

 $model->data[$model->alias] = array_merge(
 $model->data[$model->alias],
 $data
);
 $this->_addToWhitelist($model, array_keys($data));

 return parent::beforeSave($model);
}

2.	 Whenever we create a new profile with a valid Twitter account, both the url and
last_tweet fields will be automatically populated. If we are instead modifying a
profile, the last_tweet field will be updated to reflect the latest tweet from the
relevant account.

How it works...
The beforeSave callback is triggered before a save operation is performed on a model,
giving us the chance to add new fields to the set of fields that are about to be saved, or
modify other field values.

We started by determining which Twitter account is linked to the profile being saved. If no
Twitter account is specified in the data that is about to be saved, and if we are modifying an
existing record (we use $model->exists() for this check), we obtain the account specified
in its twitter field. If instead there's an account specified in the data to be saved, we use
that instead.

Regardless of the type of save operation that is about to be performed (creating or updating
a record), we set the last_tweet field to the last tweet published by the specific Twitter
account. However, we set the url field to the appropriate URL-based, on the Twitter account
only when we are creating a new record.

Chapter 4

113

Once we have set the data to be saved in the $data array, we append that data to the
$model->data property that contains all the information that will be saved. We then use
the behavior's _addToWhitelist() method, defined in CakePHP's ModelBehavior
class from which our behavior extends, so that if the developer has chosen to limit the
save operation to only a specific set of fields, then our fields are guaranteed to be saved
regardless of this restriction.

See also
ff Using callbacks in behaviors

Using the Sluggable behavior
One of the main concerns most applications have is optimizing their content for search
engines, so that their sites rank as high as possible on most engines. Among several
recommendations found in most SEO (Search Engine Optimization) guides, building URLs
that include relevant keywords is one of the most effective ones.

If we are building a content-based site, this is achievable by making sure that permanent links
to each item include most of the words that are part of the item title. As an example, if we
have a post whose title is Top 10 CakePHP Behaviors, an SEO-friendly URL could be:

http://localhost/articles/view/top-10-cakephp-behaviors.

The top-10-cakephp-behaviors part is commonly known as a slug, a part of the URL
that uses relevant keywords. In this recipe, we will learn how to use the publicly available
Sluggable behavior to automatically add slugs to our application.

The Sluggable behavior is one of the many classes I released as open
source to help fellow CakePHP developers. Feel free to send me any feedback.

Getting ready
To go through this recipe, we need a sample table to work with. Create a table named posts,
using the following SQL statement:

CREATE TABLE `posts`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `slug` VARCHAR(255) NOT NULL,
 `title` VARCHAR(255) NOT NULL,
 `text` TEXT NOT NULL,
 PRIMARY KEY(`id`),
 UNIQUE KEY `slug`(`slug`)
);

Validation and Behaviors

114

We proceed now to create the required model. Create the model Post in a file named
post.php and place it in your app/models folder, with the following contents:

<?php
class Post extends AppModel {
 public $validate = array(
 'title' => array('rule' => 'notEmpty'),
 'text' => array('rule' => 'notEmpty')
);
}
?>

Create its appropriate controller PostsController in a file named posts_controller.
php and place it in your app/controllers folder, with the following contents:

<?php
class PostsController extends AppController {
 public function add() {
 if (!empty($this->data)) {
 $this->Post->create();
 if ($this->Post->save($this->data)) {
 $this->Session->setFlash('Post created');
 $this->redirect('/');
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 }
 }
}
?>

Create a folder named posts in your app/views folder, then create the view to hold the
form in a file named add.ctp and place it in your app/views/posts folder, with the
following contents:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'title',
 'text'
));
echo $this->Form->end('Create');
?>

Chapter 4

115

Finally, we need to download the Syrup plugin for CakePHP. Go to http://github.com/
mariano/syrup/downloads and download the latest release. Uncompress the downloaded
file into your app/plugins folder. You should now have a directory named syrup inside
app/plugins.

How to do it...
1.	 We start by attaching the Sluggable behavior to the Post model. Edit your app/

models/post.php file and add the $actsAs property:
<?php
class Post extends AppModel {
 public $actsAs = array('Syrup.Sluggable');
 public $validate = array(
 'title' => array('rule' => 'notEmpty'),
 'text' => array('rule' => 'notEmpty')
);
}
?>

2.	 Let's create an action to list posts. Add the following method to the
PostsController class:
public function index() {
 $this->paginate['limit'] = 10;
 $posts = $this->paginate();
 $this->set(compact('posts'));
}

3.	 Create the view views/posts/index.ctp with the following contents:
<div class="paging">
<?php echo $this->Paginator->prev(); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(); ?>
</div>

<?php foreach($posts as $post) { ?>
 <?php echo $this->Html->link($post['Post']['title'],
array('action'=>'view', $post['Post']['slug'])); ?>
<?php } ?>

Validation and Behaviors

116

Next, create the action to view a post by slug. Add the following method to the
PostsController class:
public function view($slug) {
 $post = $this->Post->find('first', array(
 'conditions' => array('Post.slug' => $slug),
 'recursive' => -1
));
 $this->set(compact('post'));
}

Create the view views/posts/view.ctp with the following contents:

<h1><?php echo $post['Post']['title']; ?></h1>
<p><?php echo $post['Post']['text']; ?></p>
<?php echo $this->Html->link('Posts', array('action'=>'index'));
?>

After creating some posts using the form at http://localhost/posts, the list
of posts could look like the following screenshot:

4.	 If you hover over the links, you should see SEO-friendly links. For example, for the
post entitled Automatic tasks with CakePHP, its URL would be:
http://localhost/posts/view/automatic-tasks-with-cakephp

5.	 Clicking on this URL would show the details for the post.

Chapter 4

117

How it works...
The Sluggable behavior implements the beforeSave callback to automatically add the
generated slug on the specified field. It ensures that all generated slugs are unique, and
provides a full set of options to modify how a slug is generated. The following options can be
specified when attaching the behavior to a model:

Option Purpose
ignore List of words that should not be part of a slug. Optional, and defaults to:

and, for, is, of, and the.
label Field name (string), or list of field names (in an array) that are used to

create the slug. Defaults to a single field named title.
length Maximum length of the generated slug. Defaults to 100.
overwrite If set to true, the slug is generated even when modifying a record that

already has a slug. Defaults to false
real If set to true, it will ensure that the field names defined in the label

option exists in the table. Defaults to true.
separator Character to use when separating words in the slug. Defaults to -.
slug Name of the field where the slug is stored. Defaults to slug.

Geocoding addresses with the Geocodable
behavior

Since the introduction of Google Maps and other location services, a broad set of
possibilities are open to web applications, allowing geographical information to be used
for building services.

This recipe shows how to use the Geocode plugin to add location information to our own
Address model, allowing us to search address records by proximity.

The Geocode plugin is another open source project I released. More
information about it can be obtained at http://github.com/
mariano/geocode.

Validation and Behaviors

118

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
addresses, using the following SQL statement:

CREATE TABLE `addresses`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `address_1` VARCHAR(255) NOT NULL,
 `city` VARCHAR(255) default NULL,
 `state` VARCHAR(255) NOT NULL,
 `zip` VARCHAR(10) default NULL,
 `latitude` FLOAT(10,7) NOT NULL,
 `longitude` FLOAT(10,7) NOT NULL,
 PRIMARY KEY(`id`)
);

We proceed now to create the required model. Create the model Address in a file named
address.php and place it in your app/models folder with the following contents (we are
only specifying a few states for readability):

<?php
class Address extends AppModel {
 public $validate = array(
 'address_1' => array('rule' => 'notEmpty'),
 'state' => array('rule' => 'notEmpty')
);
 public static $states = array(
 'CA' => 'California',
 'FL' => 'Florida',
 'NY' => 'New York'
);
}
?>

Create its appropriate controller AddressesController in a file named addresses_
controller.php and place it in your app/controllers folder. With the following contents:

<?php
class AddressesController extends AppController {
 public function add() {
 if (!empty($this->data)) {
 $this->Address->create();
 if ($this->Address->save($this->data)) {
 $this->Session->setFlash('Address created');
 $this->redirect('/');
 } else {

Chapter 4

119

 $this->Session->setFlash('Please correct the errors');
 }
 }
 $states = $this->Address->states;
 $this->set(compact('states'));
 }
}
?>

Create a folder named addresses in your app/views folder, then create the view to hold
the form in a file named add.ctp and place it in your app/views/addresses folder, with
the following contents:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'address_1' => array('label' => 'Address'),
 'city',
 'state' => array('options'=>$states),
 'zip'
));
echo $this->Form->end('Create');
?>

We need to download the Geocode plugin for CakePHP. Go to http://github.com/
mariano/geocode/downloads and download the latest release. Uncompress the
downloaded file into your app/plugins folder. You should now have a directory named
geocode inside app/plugins.

Finally, we need to sign up for a Google Maps API key. To do so, go to http://code.
google.com/apis/maps/signup.html and follow the instructions given.

The Geocode plugin also supports Yahoo maps. If you wish to use Yahoo
Maps instead, follow the instructions shown on the plugin homepage.

How to do it...
1.	 Edit your app/config/bootstrap.php file and place the following statement right

before the closing PHP statement, replacing the string APIKEY with your own Google
Maps API key:
Configure::write('Geocode.key', 'APIKEY');

Validation and Behaviors

120

2.	 We will now make our Address model extend the skeleton model provided by the
plugin. Edit your app/models/address.php file and make the following changes:
<?php	
App::import('Model', 'Geocode.GeoAddress');
class Address extends GeoAddress {
 public $validate = array(
 'address_1' => array('rule' => 'notEmpty'),
 'state' => array('rule' => 'notEmpty')
);
 public static $states = array(
 'CA' => 'California',
 'FL' => 'Florida',
 'NY' => 'New York'
);
}
?>

3.	 By extending GeoAddress, the Geocodable behavior is automatically attached to
our model. We can now use the form at http://localhost/addresses/add to
add new addresses. After adding quite a few, we are ready to implement a paginated
listing with support to finding addresses that are near a certain location.

4.	 To simplify this operation, we will force the point of origin in our controller action,
instead of letting the user specify the address. With this in mind, add the following
action to the AddressesController class:
public function index() {
 $address = '1211 La Brad Lane, Tampa, FL';
 $this->paginate = array(
 'near',
 'address' => $address
);
 $addresses = $this->paginate();
 $this->set(compact('address', 'addresses'));
}

5.	 Now create the view app/views/addresses/index.ctp, with the following
contents:
<h1>Addresses near <?php echo $address; ?></h1>
<div class="paging">
<?php echo $this->Paginator->prev(); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(); ?>
</div>

Chapter 4

121

<?php foreach($addresses as $currentAddress) { ?>

 <?php echo $currentAddress['Address']['address_1']; ?>
 at
 <?php echo number_format($currentAddress['Address']
['distance'], 2) . ' km.'; ?>

<?php } ?>

If you inserted sample addresses that are near the specified address, the output could be
similar to that shown in the following screenshot:

How it works...
We started by downloading the plugin and configuring it by setting our own Google Maps API
key in the bootstrap.php configuration file. We then made our Address model inherit from
the GeoAddress model provided by the plugin, which makes our model use the Geocodable
behavior, and implements the near custom find type.

Since our Address model is now attached to the Geocodable behavior, every time we create
new address records the plugin will use the Google Maps API to save the appropriate location
in the latitude and longitude fields.

Using the near custom find type, we can easily find addresses that are near a certain
address, and we can also see what distance separates each of those addresses from
the point of origin.

Validation and Behaviors

122

There's more...
The Geocode plugin is quite flexible, and even includes a helper to show addresses in a
visual map. To find out all it has to offer, go to its website at http://github.com/
mariano/geocode.

5
Datasources

In this chapter, we will cover:

ff Improving the SQL datasource query log

ff Parsing CSV files with a datasource

ff Consuming RSS feeds with a datasource

ff Building a Twitter datasource

ff Adding transaction and locking support to the MySQL datasource

Introduction
Datasources are the backbone of almost all model operations. They provide an abstraction
between model logic and the underlying data layer, allowing a more flexible approach to data
manipulation. Through this abstraction, CakePHP applications are able to manipulate data
without knowing the specifics of how it's stored or fetched.

This chapter shows how to get information from existing datasources, use pre-built
datasources to deal with non-relational data, and teaches us how to create a full-featured
Twitter datasource.

Improving the SQL datasource query log
This recipe shows how to create a component that will offer extended logging of all queries
executed on any SQL-based datasource that supports the EXPLAIN command (this recipe
is designed to work with MySQL, but can be adapted to other SQL based datasources), and
show that information when the appropriate debug setting is set.

Datasources

124

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
accounts, using the following SQL statement:

CREATE TABLE `accounts`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `email` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

Create a table named profiles, using the following SQL statement:

CREATE TABLE `profiles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `account_id` INT UNSIGNED NOT NULL,
 `name` VARCHAR(255) default NULL,
 PRIMARY KEY(`id`),
 KEY `account_id`(`account_id`),
 FOREIGN KEY `profiles__accounts`(`account_id`) REFERENCES
`accounts`(`id`)
);

Add some sample data, using the following SQL statements:

INSERT INTO `accounts`(`id`, `email`) VALUES
 (1, 'john.doe@example.com'),
 (2, 'jane.doe@example.com');

INSERT INTO `profiles`(`id`, `account_id`, `name`) VALUES
 (1, 1, 'John Doe'),
 (2, 2, 'Jane Doe');

We proceed now to create the required model. Create the model Profile in a file named
profile.php and place it in your app/models folder with the following contents:

<?php
class Profile extends AppModel {
 public $belongsTo = array(
 'Account' => array('type' => 'INNER')
);
}
?>

Chapter 5

125

Create its appropriate controller ProfilesController in a file named profiles_
controller.php and place it in your app/controllers folder with the following contents:

<?php
class ProfilesController extends AppController {
 public function index() {
 $profiles = $this->Profile->find('all');
 $this->set(compact('profiles'));
 }
}
?>

Create a folder named profiles in your app/views folder, and then create the view in a
file named index.ctp and place it in your app/views/profiles folder with the following
contents:

<?php foreach($profiles as $profile) { ?>
 #<?php echo $profile['Profile']['id']; ?>:
 <?php echo $this->Html->link($profile['Profile']['name'], 'mailto:'
. $profile['Account']['email']); ?>
<?php } ?>

If you don't have a layout, copy the layout file named default.ctp from your cake/libs/
view/layouts folder to your application app/views/layouts folder. If you do have a layout,
make sure it includes the standard SQL view element where you want the SQL logging placed:

<?php echo $this->element('sql_dump'); ?>

Finally, set your debug level to 2 by editing your app/config/core.php file and changing
the Configure::write('debug') line to:

Configure::write('debug', 2);

How to do it...
1.	 Create a file named query_log.php and place it in your app/controllers/

components folder with the following contents:
<?php
class QueryLogComponent extends Object {
 public $minimumTime = 10;
 public $explain = 'EXPLAIN %s';

 public function initialize($controller, $settings = array()) {
 $this->_set($settings);
 if (!is_bool($this->enabled)) {

Datasources

126

 $this->enabled = Configure::read('debug') >= 2;
 }
 }
}
?>

2.	 While still editing the query_log.php file, add the following method to the
QueryLogComponent:
class:public function beforeRender($controller)
 {
 if ($this->enabled)
 {
 $queryLog = array();
 $datasources = ConnectionManager::sourceList();
 foreach($datasources as $name)
 {
 $datasource = ConnectionManager::getDataSource($name);
 if ($datasource->isInterfaceSupported('getLog'))
 {
 $log = $datasource->getLog();
 foreach($log['log'] as $i => $line)
 {
 if (empty($line['error']) && $line['took'] >=
 $this->minimumTime &&
 stripos(trim($line['query']), 'SELECT')
 === 0)
 {
 $explain = $datasource->query(sprint
 ($this->explain, $line['query']
));
 if (!empty($explain))
 {
 foreach($explain as $j => $explainLine)
 {
 $explain[$j] = array_combine
 (array_map('strtolower',
 array_keys($explainLine[0])),
 $explainLine[0]);
 }
 $log['log'][$i]['explain'] = $explain;
 }
 }
 }
 if (!empty($log['log']))
 {

Chapter 5

127

 $queryLog[$name] = $log;
 }
 }
 }
 if (!empty($queryLog))
 {
 $controller->set(compact('queryLog'));
 }
 }
 }

3.	 Add the QueryLog component to all your controllers. Create a file named app_
controller.php and place it in your app/ folder with the following contents:
<?php
class AppController extends Controller
 {
 public $components = array(
 'QueryLog' => array(
 'minimumTime' => 0
)
);
 }
?>

If you already have an app_controller.php file, make sure your components
property includes the QueryLog component as shown previously.

4.	 Create a file named query_log.ctp and place it in your app/views/elements
folder with the following contents:
<?php
if (empty($queryLog))
 {
 echo $this->element('sql_dump');
 return;
 }

foreach($queryLog as $datasource => $log)
 {
?>
 <table class="cake-sql-log">
 <caption>
 Datasource <?php echo $datasource; ?>:
 <?php echo number_format($log['count']) . ' queries (' .
$log['time'] . ' ms. total time)'; ?>
 </caption>
 <thead><tr>
 <th>Query</th>

Datasources

128

<th>Error</th>
<th>Affected</th>
<th>Num. rows</th>
<th>Took</th>
 </tr></thead>
 <tbody>
 <?php foreach($log['log'] as $line) { ?>
 <tr>
 <td>
<?php echo $line['query']; ?>
 <?php if (!empty($line['explain'])) { ?>

 <table class="cake-sql-log-explain">
 <thead><tr>
 <th>ID</th>
<th>Select Type</th>
<th>Table</th>
<th>Type</th>
<th>Possible Keys</th>
<th>Key</th>
<th>Ref</th>
<th>Rows</th>
<th>Extra</th>
 </tr></thead>
 <tbody>
 <?php foreach($line['explain'] as $explainLine) { ?>
 <tr>
 <td><?php echo $explainLine['id']; ?></td>
 <td><?php echo $explainLine['select_type']; ?></td>
 <td><?php echo $explainLine['table']; ?></td>
 <td><?php echo $explainLine['type']; ?></td>
 <td><?php echo $explainLine['possible_keys']; ?></td>
 <td><?php
 echo $explainLine['key'];
 if (!empty($explainLine['key_len'])) {
 echo ' (' . number_format($explainLine['key_
len']) . ')';
 }
 ?></td>
 <td><?php echo $explainLine['ref']; ?></td>
 <td><?php echo number_format($explainLine['rows']);
?></td>
 <td><?php echo $explainLine['extra']; ?></td>
 </tr>
 <?php } ?>
 </tbody>
 </table>

Chapter 5

129

 <?php } ?>
 </td>
 <td><?php echo $line['error']; ?></td>
 <td><?php echo number_format($line['affected']); ?></td>
 <td><?php echo number_format($line['numRows']); ?></td>
 <td><?php echo number_format($line['took']) . ' ms.';
?></td>
 </tr>
 <?php } ?>
 </tbody>
 </table>
<?php } ?>

5.	 Finally, edit your app/views/layouts/default.ctp file and replace the line that
reads <?php echo $this->element('sql_dump'); ?> with the following:
<?php echo $this->element('query_log'); ?>

If we now browse to http://localhost/profiles, we should see the improved query log
that includes the explanation of SELECT queries, as shown in the following screenshot:

Datasources

130

How it works...
The SQL command EXPLAIN is used to obtain the execution plan for a SELECT query. When
using EXPLAIN, MySQL includes information such as which tables are joined in the query,
in which order they are joined, and what keys (if any) are used to optimize the query. This
information can be used to optimize queries and considerably reduce their execution time.

The QueryLog component checks the debug setting to determine if it should process the
query log, and uses the minimumTime setting to add more information about those queries
that took a certain number of milliseconds, or more. In our example, we set this value to 0
when we added the component to AppController to make sure all SELECT queries are
properly explained.

The component uses the beforeRender callback to perform its processing right before
a view is to be rendered. It starts by using the ConnectionManager::sourceList()
method to obtain a list of all available datasources (that is, the name of all connections
defined in the app/config/database.php file). For each of those connection names, it
gets the actual datasource object using the ConnectionManager::getDataSource()
method. As we will see in other recipes in this chapter, a datasource may not implement all
methods, so the component then uses the isInterfaceSupported() method, available
in all datasources, to see if that particular source implements the getLog() method.

Using the getLog() method, the component obtains the list of queries issued on a particular
source, and filters those to check for only SELECT queries that run for the minimum time
specified in the minimumTime setting. Once it has the list of SELECT queries that need to
be explained, it issues an EXPLAIN SQL statement, and processes the result into a more
readable format, ensuring that all fields obtained are lower case.

Finally, and now that the query log is properly processed, it sets the appropriate view variable,
which is utilized by the query_log.ctp element to show the log.

Parsing CSV files with a datasource
This recipe shows how to parse comma-separated values (CSV) files using a datasource,
showing a clean approach to CSV processing.

Getting ready
We start by installing CakePHP's datasources plugin. Download the latest release from
http://github.com/mariano/datasources/downloads and uncompress the
downloaded file into your app/plugins folder. You should now have a directory named
datasources inside app/plugins.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

131

The datasources plugin, located at http://github.com/cakephp/datasources, is an
official CakePHP plugin that offers several community-provided datasources, such as XML-
RPC and SOAP. This and other recipes use a customized version of the plugin, modified for the
purpose of this book.

We need some sample data to work with. Create a file named contacts.csv and place it in
a folder of your choice (such as /home/mariano), with contents similar to the ones shown
below. This example includes only two rows of data, but the file used in this recipe uses
several more rows, and should include the starting header row:

name,email,country,gender,age
"John Doe","john.doe@email.com","United States of America","Male",34
"Jane Doe","jane.doe@email.com","United Kingdom","Female",25

How to do it...
1.	 We start by creating a connection to use the CSV datasource. Open your

app/config/database.php file and add the following connection:
public $csv = array(
 'datasource' => 'datasources.CsvSource',
 'path' => '/home/mariano/',
 'readonly' => true
);

2.	 Create a model named Contact in a file named contact.php and place it
in your app/models folder with the following contents:
<?php
class Contact extends AppModel
 {
 public $useDbConfig = 'csv';
 }
?>

3.	 Create its controller in a file named contacts_controller.php and place it in
your app/controllers folder with the following contents:
<?php
class ContactsController extends AppController
 {
 public function index()
 {
 $this->set('contacts', $this->paginate());
 }
 }
?>

Datasources

132

4.	 Finally, we need to create the view. Create a folder named contacts in your
app/views folder, and in that folder create a file named index.ctp with
the following contents:
<p>
<?php echo $this->Paginator->prev(); ?>
<?php echo $this->Paginator->numbers(); ?>
<?php echo $this->Paginator->next(); ?>
</p>
<table>
<thead><tr>
 <th>ID</th>
 <th>Name</th>
 <th>Email</th>
 <th>Country</th>
 <th>Gender</th>
 <th>Age</th>
</tr></thead>
<tbody>
<?php foreach($contacts as $contact) { ?>
<tr>
 <td><?php echo $contact['id']; ?></td>
 <td><?php echo $contact['name']; ?></td>
 <td><?php echo $contact['email']; ?></td>
 <td><?php echo $contact['country']; ?></td>
 <td><?php echo $contact['gender']; ?></td>
 <td><?php echo $contact['age']; ?></td>
</tr>
<?php } ?>
</tbody>
</table>

If we now browse to http://localhost/contacts, we should see a paginated
list, as shown in the following screenshot:

Chapter 5

133

How it works...
We start by creating a new connection named csv, specifying datasources.CsvSource
as its type, that is, a datasource named CsvSource that is a part of a plugin named
datasources. We set the path to our CSV files to CakePHP's temporary directory using the
path setting, and we specify that we don't want that path to be created if it doesn't exist, by
setting readonly to true.

The fork we are using in this recipe adds a feature to the original plugin:
allowing one to change the CSV file used via the model property table

We then create the Contact model, specifying its underlying connection to be csv through
the useDbConfig property. The CSV data source will then use the respective table name
as the name of the file, attaching the csv extension to it. In this case, the CSV data source
will use contacts for the Contact model, which can be changed through the model property
table.

Using that file name, it will look for it in the path that was defined in the connection settings.
If the file cannot be loaded, or if the path does not exist, it will throw a missing table error, just
as any model with a missing table would.

Datasources

134

The default csv extension can be changed by specifying the
extension setting in the connection.

Once the file is properly loaded, the datasource allows us to fetch records by issuing simple
find() calls. It supports some of the most common find settings: limit, page, fields,
and includes basic support for defining the setting conditions to limit the obtained records
(see the There's more section below).

The rest of the recipe shows how we use our Contact model just as we would use any model,
exemplifying this flexibility with a paginated list of parsed CSV records.

There's more...
Other than being able to define which page to obtain (through the page find setting) and
how many records to obtain (using the limit find setting), the CSV datasource allows for
some basic filtering, by means of the handy Set::matches() method. For example, we can
modify our paginated list to obtain contacts whose ages are over 30, by adding the following
conditions setting to our index() method:

public function index()
 {
 $this->paginate = array(

 'conditions' => array('age >' => 30)

);

 $this->set('contacts', $this->paginate());
 }

Dynamic loading of CSV files
The example used in this recipe is bound to the file contacts.csv by means of the default
table named for the Contact model, but what would be required if we needed to process
several CSV files and we don't want to create a model for each of those files?

Using the table model property, we can dynamically change the underlying CSV file a model
is importing from, and execute our find operations just as if we would've created a model
specifically for this file. We start by creating a model that uses the csv connection, but that is
not tied to any file:

<?php
class Csv extends AppModel
 {
 public $useDbConfig = 'csv';
 public $useTable = false;
 }
?>

Chapter 5

135

Setting useTable to false allows us to avoid any file loading. We can then use the
listSources() datasource method to obtain a list of all CSV files available for importing,
and then dynamically change the table model property for each of those files, and fetch the
actual records. We do this in the following controller method:

public function import()
 {
 $this->loadModel('Csv');
 $sources = array_flip($this->Csv->getDataSource()->listSources());
 foreach($sources as $source => $null)
 {
 $this->Csv->table = $source;
 $sources[$source] = $this->Csv->find('all');
 }
 debug($sources);
 exit;
 }

The list of files obtained through the listSources() method is fetched from the path
setting specified in the datasource configuration, as defined in app/config/database.
php. This path can be changed by first cleaning up the current connection, which releases
the handle to the previously configured path, by using the datasource setConfig() method
to change the path setting, and then calling it's connect() method to load the path:

$dataSource = $this->Csv->getDataSource();
$dataSource->close();
$dataSource->setConfig(array('path' => '/home/john/'));
$dataSource->connect();

Consuming RSS feeds with a datasource
This recipe shows how to get content from remote RSS feeds using a datasource.

Getting ready
We start by installing the fork of CakePHP's datasources plugin. Download the latest release
from http://github.com/mariano/datasources/downloads and uncompress the
downloaded file into your app/plugins folder. You should now have a directory named
datasources. The fork used in this recipe uses a refactored version of the RSS datasource
developed by Donatas Kairys, member of Loadsys Consulting. This modified version improves
the datasource performance, and adds the possibility of changing the feed URL through a find
setting. More information about the original datasource can be obtained at http://blog.
loadsys.com/2009/06/19/cakephp-rss-feed-datasource.

Datasources

136

How to do it...
1.	 We start by creating a connection to use the RSS datasource. Open your

app/config/database.php file and add the following connection:
public $feed = array(
 'datasource' => 'datasources.RssSource',
 'url' => 'http://marianoiglesias.com.ar/category/cakephp/feed/'
);

2.	 Create a model named Post in a file named post.php and place it in your app/
models folder with the following contents:
<?php
class Post extends AppModel {
 public $useDbConfig = 'feed';
}
?>

3.	 Create its controller in a file named posts_controller.php and place it in your
app/controllers folder with the following contents:
<?php
class PostsController extends AppController
 {
 public $helpers = array('Time');
 public function index()
 {
 $this->paginate = array(
 'order' => array('pubDate' => 'desc'),
 'limit' => 9
);
 $this->set('posts', $this->paginate());
 }
 }
?>

4.	 Finally, we need to create the view. Create a folder named posts in your app/views
folder, and in that folder create a file named index.ctp with the following contents:
<p>
<?php echo $this->Paginator->prev(); ?>
<?php echo $this->Paginator->numbers(); ?>
<?php echo $this->Paginator->next(); ?>
</p>
<table>
<thead><tr><th>Title</th><th>Published</th></tr></thead>
<tbody>

Chapter 5

137

<?php foreach($posts as $post) { ?>
<tr>
 <td><?php echo $this->Html->link($post['Post']['title'],
$post['Post']['link']); ?></td>
 <td><?php echo $this->Time->nice($post['Post']['pubDate']);
?></td>
</tr>
<?php } ?>
</tbody>
</table>

If we now browse to http://localhost/posts, we should see a paginated list of posts,
as shown in the following screenshot:

How it works...
We start by creating a new connection named feed, specifying datasources.FeedSource
as its type. We use the setting url to specify the address of the feed source. Among other
available connection settings we have:

ff encoding: Sets the character encoding to use. Defaults to the CakePHP
App.encoding configuration setting.

ff cache: If set to false, no caching will be done. Otherwise this is the cache
configuration name to use. Defaults to the configuration named default.

Datasources

138

We then create the Post model, specifying its underlying connection to be feed through
the useDbConfig property. We then proceed to setup a paginated list of posts sorting by
publication date (pubDate field) in descending order, and limiting to nine posts per page.

Just as with the CSV datasource shown in the recipe, Parsing CSV files with a datasource,
the RSS datasource allows some basic filtering. For example, to only show posts that were
created in the year 2009 or later, we would add the following conditions setting to our
index() method:

public function index()
 {
 $this->paginate = array(
 'conditions' => array('pubDate >=' => '2009-01-01'),

 'order' => array('pubDate' => 'desc'),
 'limit' => 9
);
 $this->set('posts', $this->paginate());
 }

There's more...
There are cases where we might not be able to define the feed URL in a configuration file, for
example, if the URL comes from a dynamic data source. Fortunately, for these cases we have
the option to define the feed address through a custom find setting.

In the above example, we could remove the feed URL from the connection settings, and
specify it as a find setting named url:

$this->paginate = array(
 'url' => 'http://marianoiglesias.com.ar/category/cakephp/feed/',

 'order' => array('pubDate' => 'desc'),
 'limit' => 9
);
$this->set('posts', $this->paginate());

Changing connection settings at runtime
We've seen how we can change the feed URL by using a custom find setting. However, we
could also change this address by modifying the connection settings. Using the method
setConfig(), available in all datasources, we can make changes to any connection setting.
For example, instead of using the url custom find setting, we'll change the feed URL by
changing the connection:

$this->Post->getDataSource()->setConfig(array(

 'url' => 'http://marianoiglesias.com.ar/category/cakephp/feed/'

));

Chapter 5

139

$this->paginate = array(
 'order' => array('pubDate' => 'desc'),
 'limit' => 9
);
$this->set('posts', $this->paginate());

Building a Twitter datasource
In this recipe we will learn how to implement our own datasource by providing a way to read
from and post messages to a Twitter account.

Getting ready
We will integrate this datasource with OAuth, which is an authentication mechanism
supported by Twitter. To do so, we will use a class named HttpSocketOauth developed by
Neil Crookes, which is an extension to CakePHP's own HttpSocket class that adds OAuth
support in a clean and elegant way. Download the file named http_socket_oauth.php
from the URL http://github.com/neilcrookes/http_socket_oauth/raw/master/
http_socket_oauth.php and place it in your app/vendors folder.

There are other ways to communicate with an OAuth provider such as Twitter, most noticeably
using the PHP OAuth library available at http://code.google.com/p/oauth-php. This
recipe uses Neil's approach for its simplicity.

Let us continue by creating the Tweet model. Create a file named tweet.php and place it in
your app/models folder with the following contents:

<?php
class Tweet extends AppModel {
 public $useDbConfig = 'twitter';
}
?>

Create its controller in a file named tweets_controller.php and place it in your
app/controllers with the following contents:

<?php
class TweetsController extends AppController {
 public function index($twitter) {
 $tweets = $this->Tweet->find('all', array(
 'conditions' => array('username' => $twitter)
));
 $this->set(compact('tweets', 'twitter'));
 }

Datasources

140

 public function add($twitter) {
 if (!empty($this->data)) {
 $this->Tweet->create();
 if ($this->Tweet->save($this->data)) {
 $this->Session->setFlash('Succeeded');
 } else {
 $this->Session->setFlash('Failed');
 }
 }
 $this->redirect(array('action'=>'index', $twitter));
 }
}
?>

We now need the appropriate view. Create a folder named tweets in your app/views folder,
and inside it, create a file named index.ctp with the following contents:

<?php
echo $this->Form->create(array('url' => array('action'=>'add',
$twitter)));
echo $this->Form->inputs(array(
 'status' => array('label'=>false)
));
echo $this->Form->end('Tweet this');
?>
<?php foreach($tweets as $tweet) { ?>
 <p><?php echo $tweet['Tweet']['text']; ?></p>
 <p><small>
 <?php echo $this->Html->link(
 date('F d, Y', strtotime($tweet['Tweet']['created_at'])),
 'http://www.twitter.com/' . $tweet['User']['screen_name'] . '/
status/' . $tweet['Tweet']['id']
); ?>
 with <?php echo $tweet['Tweet']['source']; ?>
 </small></p>

<?php } ?>

Next, we will need to register our application on Twitter. Go to the URL http://twitter.
com/apps/new and fill in the form (an example is shown in the following figure.) Make sure
you specify a domain different than localhost when asked for your Application Website,
and that you select Read & Write when asked for the Default Access Type. You will also
need to specify Browser as the Application Type, and http://localhost/tweets as
the Callback URL, replacing localhost with your own host. This callback won't actually
be utilized, as we will define it at runtime, but it is mandatory, so we need to fill it in.

Chapter 5

141

When you successfully submit this form, Twitter will give you some information regarding your
newly registered application. In that screen, make sure to grab what is shown as Consumer
key and Consumer secret, as we will need it when going through this recipe.

Add a new connection named $twitter to your app/config/database.php, by using
the following contents and replacing KEY with your Consumer key and SECRET_KEY with
the Consumer secret you obtained above:

public $twitter = array(
 'datasource' => 'twitter',
 'key' => 'KEY',
 'secret' => 'SECRET_KEY'
);

How to do it...
We start by fully implementing the datasource. Create a file named twitter_source.php
and place it in your app/models/datasources folder with the following contents:

<?php
App::import('Vendor', 'HttpSocketOauth');
class TwitterSource extends DataSource {
 public $_baseConfig = array(
 'key' => null,
 'secret' => null

Datasources

142

);
 protected $_schema = array(
 'tweets' => array(
 'id' => array(
 'type' => 'integer',
 'null' => true,
 'key' => 'primary',
 'length' => 11,
),
 'text' => array(
 'type' => 'string',
 'null' => true,
 'key' => 'primary',
 'length' => 140
),
 'status' => array(
 'type' => 'string',
 'null' => true,
 'key' => 'primary',
 'length' => 140
),
)
);

 public function __construct($config = null, $autoConnect = true) {
 parent::__construct($config, $autoConnect);
 if ($autoConnect) {
 $this->connect();
 }
 }

 public function listSources() {
 return array('tweets');
 }

 public function describe($model) {
 return $this->_schema['tweets'];
 }

 public function connect() {
 $this->connected = true;
 $this->connection = new HttpSocketOauth();
 return $this->connected;
 }

 public function close() {
 if ($this->connected) {
 unset($this->connection);

Chapter 5

143

 $this->connected = false;
 }
 }
}

Now that we have the basic datasource skeleton, we need to add the ability for our datasorce
to connect to Twitter, using OAuth. Add the following methods to the TwitterSource:

class created before:public function token($callback = null) {
 $response = $this->connection->request(array(
 'method' => 'GET',
 'uri' => array(
 'host' => 'api.twitter.com',
 'path' => '/oauth/request_token'
),
 'auth' => array(
 'method' => 'OAuth',
 'oauth_callback' => $callback,
 'oauth_consumer_key' => $this->config['key'],
 'oauth_consumer_secret' => $this->config['secret']
)
));

 if (!empty($response)) {
 parse_str($response, $response);
 if (empty($response['oauth_token']) && count($response) == 1 &&
current($response) == '') {
 trigger_error(key($response), E_USER_WARNING);
 } elseif (!empty($response['oauth_token'])) {
 return $response['oauth_token'];
 }
 }
 return false;
}

public function authorize($token, $verifier) {
 $return = false;
 $response = $this->connection->request(array(
 'method' => 'GET',
 'uri' => array(
 'host' => 'api.twitter.com',
 'path' => '/oauth/access_token'
),
 'auth' => array(
 'method' => 'OAuth',

Datasources

144

 'oauth_consumer_key' => $this->config['key'],
 'oauth_consumer_secret' => $this->config['secret'],
 'oauth_token' => $token,
 'oauth_verifier' => $verifier
)
));

 if (!empty($response)) {
 parse_str($response, $response);
 if (count($response) == 1 && current($response) == '') {
 trigger_error(key($response), E_USER_WARNING);
 } else {
 $return = $response;
 }
 }
 return $return;
}

Our datasource is now able to connect by requesting the proper authorization from Twitter.
The next step is adding support to fetch tweets by implementing the datasource read()
method. Add the following method to the TwitterSource:

class:public function read($model, $queryData = array()) {
 if (
 empty($queryData['conditions']['username']) ||
 empty($this->config['authorize'])
) {
 return false;
 }

 $response = $this->connection->request(array(
 'method' => 'GET',
 'uri' => array(
 'host' => 'api.twitter.com',
 'path' => '1/statuses/user_timeline/' .
$queryData['conditions']['username'] . '.json'
),
 'auth' => array_merge(array(
 'method' => 'OAuth',
 'oauth_consumer_key' => $this->config['key'],
 'oauth_consumer_secret' => $this->config['secret']
), $this->config['authorize'])
));

 if (empty($response)) {
 return false;

Chapter 5

145

 }

 $response = json_decode($response, true);
 if (!empty($response['error'])) {
 trigger_error($response['error'], E_USER_ERROR);
 }

 $results = array();
 foreach ($response as $record) {
 $record = array('Tweet' => $record);
 $record['User'] = $record['Tweet']['user'];
 unset($record['Tweet']['user']);
 $results[] = $record;
 }
 return $results;
}

The job would not be complete if we are unable to post new tweets with our datasource. To
finish our implementation, add the following method to the TwitterSource:

class:public function create($model, $fields = array(), $values =
array()) {
 if (empty($this->config['authorize'])) {
 return false;
 }

 $response = $this->connection->request(array(
 'method' => 'POST',
 'uri' => array(
 'host' => 'api.twitter.com',
 'path' => '1/statuses/update.json'
),
 'auth' => array(
 'method' => 'OAuth',
 'oauth_token' => $this->config['authorize']['oauth_token'],
 'oauth_token_secret' => $this->config['authorize']['oauth_
token_secret'],
 'oauth_consumer_key' => $this->config['key'],
 'oauth_consumer_secret' => $this->config['secret']
),
 'body' => array_combine($fields, $values)
));

 if (empty($response)) {
 return false;
 }

 $response = json_decode($response, true);
 if (!empty($response['error'])) {

Datasources

146

 trigger_error($response['error'], E_USER_ERROR);
 }

 if (!empty($response['id'])) {
 $model->setInsertId($response['id']);
 return true;
 }
 return false;
}

For the datasource to work, we will have to get OAuth authorization on all our requests
to Twitter. To do so, we implement a method that will talk with the datasource to get the
authorization keys, and handle the authorization callbacks Twitter will issue. Edit your
app/controllers/tweets_controller.php and add the following contents at the
beginning of the TweetsController class:

public function beforeFilter() {
 parent::beforeFilter();
 if (!$this->_authorize()) {
 $this->redirect(null, 403);
 }
}

protected function _authorize() {
 $authorize = $this->Session->read('authorize');
 if (empty($authorize)) {
 $source = $this->Tweet->getDataSource();
 $url = Router::url(null, true);
 if (
 !empty($this->params['url']['oauth_token']) &&
 !empty($this->params['url']['oauth_verifier'])
) {
 $authorize = $source->authorize(
 $this->params['url']['oauth_token'],
 $this->params['url']['oauth_verifier']
);
 $this->Session->write('authorize', $authorize);
 } elseif (!empty($this->params['url']['denied'])) {
 return false;
 } else {
 $token = $source->token($url);
 $this->redirect('http://api.twitter.com/oauth/
authorize?oauth_token=' . $token);
 }
 }

 if (!empty($authorize)) {

Chapter 5

147

 $this->Tweet->getDataSource()->setConfig(compact('authorize'));
 }
 return $authorize;
}

Assuming your twitter account name is cookbook5, we now browse to http://localhost/
tweets/index/cookbook5, and should see a paginated list of our tweets as shown in the
following figure:

Using the form to post new tweets should submit our text to Twitter, and show us our new
tweet in the listing.

How it works...
The Twitter datasource starts by specifying two new connection settings:

ff key: A Twitter application consumer key

ff secret: A Twitter application consumer secret key

It then defines a static schema, through the _schema property and the listSources() and
describe() method implementations, to describe how a tweet post is built. This is done
purely to add support for a Twitter based model to work with CakePHP's FormHelper. Doing
so allows the FormHelper to determine what type of field to use when rendering a form for a
Twitter-based model.

Datasources

148

The connect() and close() methods simply instantiate and erase respectively an instance
of the HttpSocketOauth class, which is our handler to communicate with the Twitter API.

OAuth is a complicated process, and understanding it may prove to be a
challenge. If you wish to obtain more detailed information about this protocol,
there is probably no better resource than the Beginner's Guide to OAuth,
available at http://hueniverse.com/oauth.

The token() method uses the connection to request a token from Twitter, which is needed
for our requests to be successful. When one is obtained, we take the user to a specific Twitter
URL using this token (the redirection takes place in the controller's _authorize() method),
which is then used by Twitter to request the user for authorization.

If the user allows the access to his/her Twitter account, the Twitter API will redirect the
browser to the URL specified in the callback argument of the datasource token()
method. This callback was set in _authorize() as the current URL.

After the user is brought back to our application, the _authorize() method will check
for the existence of two parameters sent by Twitter: oauth_token and oauth_verifier.
These parameters are passed as arguments to the datasource authorize() method,
which talks back to the Twitter API for the final stage in the OAuth authorization procedure.
This stage ends with Twitter giving back a valid token, and a token secret key. They are saved
in the controller as a session variable, to avoid doing this on every request.

Once we have the authorization information, we set it as a connection setting by using the
setConfig() method available in all datasources, and setting this information in a setting
named authorize, because we won't be able to read from or post to our Twitter account
without this authorization.

The datasource read() method is the implementation of all read procedures on our
datasource. In our case, we only allow find operations that contain a condition on the field
username. This condition tells us from which user account we want to obtain tweets. Using
this account name and the authorization information, we make a request to the Twitter API to
obtain the user timeline. Because the request was made using JSON, which can be identified
from the request URL), we use PHP's json_decode() function to parse the response. We
then browse through the resulting items (if no error was thrown) and change them into a more
friendly format.

The datasource write() method is the implementation of save operations, that is,
the creating of new tweets (modification of existing tweets is not supported in this
implementation). Similarly to the read() method, we use the authorization information
to make a POST request to the Twitter API, specifying as the tweet data whatever fields
were sent to the method (combination of the fields and values arguments).

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 5

149

Adding transaction and locking support
to the MySQL datasource

CakePHP's built-in MySQL datasource provides some basic transaction support by sending all
unknown method calls directly to the datasource. However, this only enables us to use some
basic transaction commands, and any locking would have to be performed through manual
SQL queries.

Table locking is a mechanism to effectively manage concurrent access to
table contents by different client sessions. More information about locking
in MySQL is available at http://dev.mysql.com/doc/refman/5.5/
en/internal-locking.html.

This recipe shows how to modify an existing datasource by implementing better transaction
support to the MySQL driver, adding locking operations, and finally allowing a recovery
procedure for locked queries.

More information about transaction support in MySQL databases is available
at http://dev.mysql.com/doc/refman/5.5/en/commit.html.

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
profiles using the following SQL statement:

CREATE TABLE `profiles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `name` VARCHAR(255) default NULL,
 PRIMARY KEY(`id`)
) ENGINE=InnoDb;

The above query includes the specification of the MySQL database engine.
Even when MyISAM (another available engine) can handle table level locking,
row level locking is only possible on InnoDb tables. Furthermore, transactions
are only supported on InnoDb. More information about the different engines
and their supported features is available at http://dev.mysql.com/
doc/refman/5.5/en/storage-engines.html.

Add some sample data using the following SQL statements:

INSERT INTO `profiles`(`id`, `name`) VALUES
 (1, 'John Doe'),
 (2, 'Jane Doe');

Datasources

150

We proceed now to create the required model. Create the model Profile in a file named
profile.php and place it in your app/models folder with the following contents:

<?php
class Profile extends AppModel {
}
?>

Create its appropriate controller ProfilesController in a file named profiles_
controller.php and place it in your app/controllers folder with the following contents:

<?php
class ProfilesController extends AppController {
 public function index() {
 }
}
?>

How to do it...
1.	 We start by creating the skeleton of our datasource. Create a folder named dbo

inside your app/models/datasources folder. In the dbo folder, create a file
named dbo_mysql_transaction.php with the following contents:
<?php
App::import('Core', 'DboMysql');
class DboMysqlTransaction extends DboMysql {
 protected $backAutoCommit;
 protected $lockTimeoutErrorCode = 1205;
 public function __construct($config = null, $autoConnect =
true) {
 $this->_baseConfig = Set::merge(array(
 'lock' => array(
 'log' => LOGS . 'locks.log',
 'recover' => true,
 'retries' => 1
),
 'autoCommit' => null
), $this->_baseConfig);

 $this->_commands = array_merge(array(
 'lock' => 'LOCK TABLES {$table} {$operation}',
 'unlock' => 'UNLOCK TABLES',
 'setAutoCommit' => 'SET @@autoCommit={$autoCommit}'
), $this->_commands);

 parent::__construct($config, $autoConnect);

Chapter 5

151

 if (
 !is_null($this->config['autoCommit']) &&
 !$this->setAutoCommit($this->config['autoCommit'])
) {
 trigger_error('Could not set autoCommit', E_USER_
WARNING);
 }
 }
}
?>

2.	 We continue by adding methods to lock and unlock tables. Edit your app/models/
datasources/dbo/dbo_mysql_transaction.php file and add the following
methods to the DboMysqlTransaction class:
public function lock($model = null, $options = array()) {
 if (!is_object($model) && empty($options)) {
 $options = $model;
 $model = null;
 }

 if (empty($options) && !isset($model)) {
 trigger_error('Nothing to lock', E_USER_WARNING);
 return false;
 } elseif (!is_array($options)) {
 $options = array('table' => $options);
 } elseif (Set::numeric(array_keys($options))) {
 if (count($options) > 1) {
 $options = array('table' => $options[0], 'operation'
=> $options[1]);
 } else {
 if (!empty($options[0]) && is_array($options[0])) {
 $options = $options[0];
 } else {
 $options = array('table' => $options[0]);
 }
 }
 }

 if (empty($options['table']) && isset($model)) {
 $options = array_merge(array(
 'table' => $model->table,
 'alias' => $model->alias
), $options);

 if (!empty($options['operation']) &&
$options['operation'] == 'read') {

Datasources

152

 unset($options['alias']);
 }
 }

 $options = array_merge(array('alias'=>null,
'operation'=>'read', 'local'=>false, 'low'=>false), $options);
 if (!in_array(strtolower($options['operation']),
array('read', 'write'))) {
 trigger_error(sprintf('Invalid operation %s for locking',
$options['operation']), E_USER_WARNING);
 return false;
 }

 $table = $this->fullTableName($options['table']);
 if (!empty($options['alias'])) {
 $table .= ' AS ' . $this->name($options['alias']);
 }
 $operation = strtoupper($options['operation']);
 if ($options['operation'] == 'read' && $options['local']) {
 $operation .= ' LOCAL';
 } elseif ($options['operation'] == 'write' &&
$options['low']) {
 $operation = 'LOW_PRIORITY ' . $operation;
 }

 $sql = strtr($this->_commands['lock'], array(
 '{$table}' => $table,
 '{$operation}' => $operation
));
 return ($this->query($sql) !== false);
}

public function unlock($model = null, $options = array()) {
 return ($this->query($this->_commands['unlock']) !== false);
}

While still editing the DboMysqlTransaction class, add the
following methods to allow us to get and change the auto commit
status:public function getAutoCommit($model = null) {
 if (is_null($this->config['autoCommit'])) {
 if (!$this->isConnected() && !$this->connect()) {
 trigger_error('Could not connect to database', E_USER_
WARNING);
 return false;
 }

 $result = $this->query('SELECT @@autocommit AS ' . $this-
>name('autocommit'));
 if (empty($result)) {

Chapter 5

153

 trigger_error('Could not fetch autoCommit status from
database', E_USER_WARNING);
 return false;
 }
 $this->config['autoCommit'] = !empty($result[0][0]
['autocommit']);
 }
 return $this->config['autoCommit'];
}

public function setAutoCommit($model, $autoCommit = null) {
 if (!$this->isConnected() && !$this->connect()) {
 trigger_error('Could not connect to database', E_USER_
WARNING);
 return false;
 }

 if (is_bool($model)) {
 $autoCommit = $model;
 $model = null;
 } elseif (is_array($autoCommit)) {
 list($autoCommit) = $autoCommit;
 }

 $this->config['autoCommit'] = !empty($autoCommit);
 $sql = strtr($this->_commands['setAutoCommit'], array(
 '{$autoCommit}' => ($this->config['autoCommit'] ? '1' :
'0')
));
 return ($this->query($sql) !== false);
}

3.	 We will now add our basic transaction commands. Edit your app/models/
datasources/dbo/dbo_mysql_transaction.php file and add the following
methods to the DboMysqlTransaction class:
public function begin($model) {
 $this->_startTransaction();
 return parent::begin($model);
}

public function commit($model) {
 $result = parent::commit($model);
 $this->_endTransaction();
 return $result;
}

public function rollback($model) {
 $result = parent::rollback($model);

Datasources

154

 $this->_endTransaction();
 return $result;
}

protected function _startTransaction() {
 if ($this->getAutoCommit()) {
 $this->backAutoCommit = $this->getAutoCommit();
 $this->setAutoCommit(false);
 }
}

protected function _endTransaction() {
 if (isset($this->backAutoCommit)) {
 $this->setAutoCommit($this->backAutoCommit);
 $this->backAutoCommit = null;
 }
}

public function query() {
 $args = func_get_args();
 if (!empty($args) && count($args) > 2 && in_array($args[0],
array_keys($this->_commands))) {
 list($command, $params, $model) = $args;
 if ($this->isInterfaceSupported($command)) {
 return $this->{$command}($model, $params);
 }
 }
 return call_user_func_array(array('parent', 'query'), $args);
}

4.	 We end by adding methods to recover from a locked query, and to log
those locks. Once again, edit your app/models/datasources/dbo/
dbo_mysql_transaction.php file and add the following methods to the
DboMysqlTransaction class:
public function _execute($sql, $retry = 0) {
 $result = parent::_execute($sql);
 $error = $this->lastError();
 if (
 !empty($error) &&
 $this->config['lock']['recover'] &&
 preg_match('/^\b' . preg_quote($this->lockTimeoutErrorCode)
. '\b/', $error)
) {
 if ($retry == 0) {
 $message = 'Got lock on query [' . $sql . ']';
 $queries = array_reverse(Set::extract($this->_queriesLog,
'/query'));

Chapter 5

155

 if (!empty($queries)) {
 $message .= " Query trace (newest to oldest): \n\t";
 $message .= implode("\n\t", array_slice($queries, 0,
5));
 }
 $this->lockLog($message);
 }

 if ($retry < $this->config['lock']['retries']) {
 $result = $this->_execute($sql, $retry + 1);
 } elseif (!empty($this->config['lock']['log'])) {
 $this->lockLog('Failed after ' . number_format($retry) .
' retries');
 }
 } elseif (empty($error) && $retry > 0 && !empty($this-
>config['lock']['log'])) {
 $this->lockLog('Succeeded after ' . number_format($retry) .
' retries');
 }

 if (empty($error) && !$this->fullDebug && !empty($this-
>config['lock']['log'])) {
 $this->logQuery($sql);
 }
 return $result;
}

protected function lockLog($message) {
 $message = '['.date('d/m/Y H:i:s') . '] ' . $message . "\n";
 $handle = fopen($this->config['lock']['log'], 'a');
 if (!is_resource($handle)) {
 trigger_error(sprintf('Could not open log file %s', $this-
>config['lock']['log']), E_USER_WARNING);
 return false;
 }

 fwrite($handle, $message);
 fclose($handle);
 return true;
}

5.	 To test what happens when you reach a lock, edit your app/controllers/
profiles_controller.php file and add the following method to the
ProfilesController class:
public function index() {
 $this->Profile->setAutoCommit(false);
 if ($this->Profile->lock()) {
 $profile = $this->Profile->find('all');

Datasources

156

 debug($profile);
 $this->Profile->unlock();
 }
 exit;
}

6.	 Open your MySQL client and issue the following SQL commands (don't close the client
after you issue these commands as you may want to release the lock as shown later):
SET @@autocommit=0;
LOCK TABLE `profiles` WRITE;

7.	 If we now browse to http://localhost/profiles we should get an SQL error
message that reads SQL Error: 1205: Lock wait timeout exceeded; try restarting
transaction. A file named locks.log should have been created in your app/tmp/
logs folder with the following contents (the database name cookbook_chapter5_
transaction should change to the name of the database you are using):
[23/06/2010 09:14:11] Got lock on query [LOCK TABLES `profiles` AS
`Profile` READ] Query trace (newest to oldest):
 SET @@autocommit=0
 DESCRIBE `profiles`
 SHOW TABLES FROM `cookbook_chapter5_transaction`;
[23/06/2010 09:14:17] Failed after 1 retries

8.	 To test the recovery of locked queries, we could release the lock in our MySQL client
by issuing the following command:
UNLOCK TABLES;

and do so somewhere between the first failed transaction and the next recovery
attempt. To change how much time MySQL waits to see if a lock can be obtained,
access MySQL documentation for the server setting innodb_lock_wait_timeout.

How it works...
As we are extending a DBO based datasource, we name our class using the Dbo
prefix (DboMysqlTransaction), and place it in the dbo folder which is itself in our
app/models/datasources folder.

The initial implementation includes two class properties:

ff backAutoCommit:Utilized by the helper methods _startTransaction()
and _endTransaction(), is used to temporarily change the auto commit setting.

ff lockTimeoutErrorCode: Specifies MySQL's code number for identifying deadlock
time expired errors.

Chapter 5

157

Our first method is the class constructor, which is overridden to add our own connection
settings, and the actual SQL commands to lock and unlock tables and to change the auto
commit setting. The connection settings we added are:

ff lock: It is a set of settings that specify what to do when dealing with locked queries.
Its subset of settings are:

�� log: It is path to the file where to store logging information. If set to false,
logging will be disabled. Defaults to a file named locks.log that is created
in the app/tmp/logs directory.

�� recover: It decides whether to try to recover from locked queries. If set to
false, no recovery will be attempted. Defaults to true.

�� retries: It decides if recover is set to true, how many attempts to rerun
the failed (locked) query. Defaults to 1.

ff autoCommit: It gives the initial autocommit value (true for enabled, false for
disabled). If set to null, it will get its value from the database server.

We then implement the lock() and unlock() methods. The lock() method allows us to
lock a table for a certain operation. We can use it directly from a model to lock its underlying
table for a read operation:

$this->Profile->lock();

We can change the locking operation to be write:

$this->Profile->lock(array('operation'=>'write'))

We can also use it to lock a specific table, using either the lock() method available on all
models using this datasource, or directly invoking the method in the datasource:

$this->Profile->getDataSource()->lock(array(
 'table' => 'profiles',
 'operation'=>'write'
));

The unlock() method is used similarly, either through the model, or directly using the
datasource) and unlocks all locked tables.

When you do lock table, make sure you disable auto commit, by using
the setAutoCommit() method, like so: $this->Profile-
>setAutoCommit(false);

In the next block of code, we add the implementation for starting, committing and rolling
back transactions. There is not much detail needed for these methods except that they
take care of disabling auto-commit upon starting a transaction, and reset its status after
a transaction is finished.

Datasources

158

The query() method is overridden to allow executing some of our datasource methods
directly from our models. That is the case for the three methods we added: lock(),
unlock(), and setAutoCommit().

Finally, we override the _execute() method to detect when a lock wait timeout error is
thrown. In these cases, we use the lockLog() method to LOG the situation, and we
proceed to retry the query if we were told to do so.

6
Routing Magic

In this chapter, we will cover:

ff Using named and GET parameters

ff Using routes with prefixes

ff Working with route elements

ff Adding catch-all routes for profile pages

ff Adding validation for catch-all routes

ff Creating custom Route classes

Introduction
Almost every web-based application will eventually have to develop a successful strategy
to obtain better search engine position through a technique known as search engine
optimization.

This chapter starts by introducing some basic concepts of routing through the use of
route parameters, and continues to build optimized routes to leverage our search engine
placement.

The final section in this chapter shows us how to create highly optimized URLs for our user
profiles, and how to build custom Route classes to obtain even more flexibility.

Routing Magic

160

Using named and GET parameters
CakePHP already offers a very useful set of default routes that allow any set of
URL elements to be sent to the controller action as arguments. For example, a URL
such as http://localhost/tags/view/cakephp is interpreted as a call to the
TagsController::view() method, sending cakephp as its first argument.

However, there are times when we need more flexibility when creating URLs with arguments,
such as the ability to omit certain arguments or add others that may not have been specified
in the method signature. Named and GET parameters allow us to have such flexibility, without
losing the advantage of letting CakePHP deal with its automatic URL parsing.

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
categories, using the following SQL statement:

CREATE TABLE `categories`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

Create a table named articles, using the following SQL statement:

CREATE TABLE `articles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `category_id` INT UNSIGNED NOT NULL,
 `title` VARCHAR(255) NOT NULL,
 `body` TEXT NOT NULL,
 PRIMARY KEY(`id`),
 KEY `category_id`(`category_id`),
 FOREIGN KEY `articles__categories`(`category_id`) REFERENCES
`categories`(`id`)
);

Add some sample data, using the following SQL statements:

INSERT INTO `categories`(`id`, `name`) VALUES
 (1, 'Frameworks'),
 (2, 'Databases');

INSERT INTO `articles`(`id`, `category_id`, `title`, `body`) VALUES
 (1, 1, 'Understanding Containable', 'Body of article'),
 (2, 1, 'Creating your first test case', 'Body of article'),

Chapter 6

161

 (3, 1, 'Using bake to start an application', 'Body of article'),
 (4, 1, 'Creating your first helper', 'Body of article'),
 (5, 2, 'Adding indexes', 'Body of article');

We proceed now to create the required model. Create the model, Article, in a file named
article.php and place it in your app/models folder, with the following contents:

<?php
class Article extends AppModel {
 public $belongsTo = array(
 'Category'
);
}
?>

Create its appropriate controller, ArticlesController, in a file named articles_
controller.php and place it in your app/controllers folder, with the following contents:

<?php
class ArticlesController extends AppController {
 public function view($id) {
 $article = $this->Article->find('first', array(
 'conditions' => array('Article.id' => $id)
));
 if (empty($article)) {
 $this->cakeError('error404');
 }
 $articles = $this->Article->find('all', array(
 'conditions' => array(
 'Category.id' => $article['Category']['id'],
 'Article.id !=' => $article['Article']['id']
),
 'order' => 'RAND()'
));
 $this->set(compact('article', 'articles'));
 }
}
?>

Create a folder named articles in your app/views folder, then create the view in
a file named view.ctp and place it in your app/views/articles folder, with the
following contents:

<h1><?php echo $article['Article']['title']; ?></h1>
<p><?php echo $article['Article']['body']; ?></p>
<?php if (!empty($articles)) { ?>

Routing Magic

162

<p>Related articles:</p>

 <?php foreach($articles as $related) { ?>
 <?php echo $this->Html->link(
 $related['Article']['title'],
 array(
 'action'=>'view',
 $related['Article']['id']
)
); ?>
 <?php } ?>

<?php } ?>

How to do it...
1.	 We start by adding the possibility to change the number of related articles through

a GET parameter. Edit your app/controllers/articles_controller.php file
and make the following changes to the view() method:
public function view($id) {
 $article = $this->Article->find('first', array(
 'conditions' => array('Article.id' => $id)
));
 if (empty($article)) {
 $this->cakeError('error404');
 }

 $limit = !empty($this->params['url']['related']) ?
 $this->params['url']['related'] :
 0;
 $articles = $this->Article->find('all', array(
 'conditions' => array(
 'Category.id' => $article['Category']['id'],
 'Article.id !=' => $article['Article']['id']
),
 'order' => 'RAND()',
 'limit' => $limit > 0 ? $limit : null
));
 $this->set(compact('article', 'articles', 'limit'));
}

Chapter 6

163

2.	 If we now browse to http://localhost/articles/view/1?related=2 we
should see the article content, along with up to two related articles, as shown in the
following screenshot:

3.	 We will now use named parameters to pass a search engine-friendly version of the
article title, even though it is not needed to show the article or its related content.
Edit your ArticlesController class and add the following at the end of the
view() method:
$slug = !empty($this->params['named']['title']) ?
 $this->params['named']['title'] :
 null;
$categorySlug = !empty($this->params['named']['category']) ?
 $this->params['named']['category'] :
 null;
$this->set(compact('slug', 'categorySlug'));

4.	 Now edit the app/views/articles/view.ctp file and make the following
changes:
<?php if (!empty($slug)) { ?>
 Slug: <?php echo $this->Html->clean($slug); ?>

<?php } ?>
<?php if (!empty($categorySlug)) { ?>
 Category slug: <?php echo $this->Html->clean($categorySlug);
?>

<?php } ?>
<h1><?php echo $article['Article']['title']; ?></h1>
<p><?php echo $article['Article']['body']; ?></p>
<?php if (!empty($articles)) { ?>

<p>Related articles:</p>

Routing Magic

164

 <?php foreach($articles as $related) { ?>
 <?php echo $this->Html->link(
 $related['Article']['title'],
 array(
 'action'=>'view',
 $related['Article']['id'],
 '?' => array('related' => $limit),
 'category' => strtolower(Inflector::slug($related['Cat
egory']['name'])),
 'title' => strtolower(Inflector::slug($related['Artic
le']['title']))
)
); ?>
 <?php } ?>

<?php } ?>

5.	 If we hover over the links to the related articles, we will notice they include two new
parameters: category and title. An example generated URL could be http://
localhost/articles/view/4/category:frameworks/title:creating_
your_first_helper. Clicking on this link would take us to the article page, which
also shows the specified parameters.

How it works...
Both GET and named parameters work in a similar fashion, by being automatically available in
our application code as an array. GET parameters are available in $this->params['url'],
while named parameters are available in $this->params['named']. Checking the
existence of a parameter is as simple as verifying that one of these given arrays contains a
value whose key is the wanted parameter.

Creating links that specify either named or GET parameters (or both) is done by also specifying
an indexed array of parameters (where the key is the parameter name, and the value its
value.) For GET parameters, this array is set in the special ? route index key, while for named
parameters each parameter is specified as part of the actual array based URL.

There's more...
We learnt how to specify named parameters just by setting a key => value pair in the
array-based URL. However, we may want to also specify which of the named parameters
should actually be parsed, and to make sure they are only parsed when the value matches
a certain regular expression.

Chapter 6

165

As an example, we can define the title named parameter for all actions in the articles
controller, so it is parsed only when it follows a certain regular expression, where title can only
contain lower case letters, numbers, or the underscore sign. To do so, we add the following
sentence to our app/config/routes.php file:

Router::connectNamed(
 array('title' => array('match' => '^[a-z0-9_]+$', 'controller' =>
'articles')),
 array('default' => true)
);

The first argument is an array, indexed by parameter name, and whose value contains another
array that may include any of the following settings, all of which are optional:

Setting Purpose
action If specified, the named parameter will be parsed only for the given action.
controller If specified, the named parameter will be parsed only for the given

controller.
match A regular expression that will be used to see if the provided value matches

the named parameter. If specified, the named parameter will be parsed
only when the value matches the expression.

The second argument to Router::connectNamed() is an optional array of settings, which
may include any of the following:

Setting Purpose
default If set to true, it will also load the named parameters needed for pagination

to work. If you call Router::connectNamed() several times, this is only
needed once, unless you set the reset option to true. Defaults to false.

greedy If set to false, it will only parse the named parameters that are explicitly
defined through a Router::connectNamed() call. Defaults to true.

reset If set to true, it will wipe out any named parameters defined prior to this call.
Defaults to false.

To further understand the greedy option, we could still allow the URL to include the
category and title parameters, but may want to only parse the title value. To do this,
we would set greedy to false when defining the named parameter. That way, $this-
>params['named'] would only contain the value for title, even when category is
specified in the requested URL. We also want to do this only for the view action of the
articles controller:

Router::connectNamed(
 array('title' => array('match' => '^[a-z0-9_]+$',
'controller'=>'articles', 'action'=>'view')),

Routing Magic

166

 array('greedy' => false)
);

Notice how we had to specify the regular expression for the title named parameter again,
even though we specified it before. This is because we are configuring a named parameter
whose name already exists, so our definition would override the previous one.

See also
ff Working with route elements

Using routes with prefixes
Often enough we find ourselves needing to separate different areas of our application, not
only in terms of code and user interface, but also in terms of functionality. With CakePHP's
flexible routing system, we can achieve this and more by using prefixes, which provide us
with a way to reimplement certain controller actions in different ways, and reach a particular
implementation depending on the prefix being used, if any.

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
profiles, using the following SQL statement:

CREATE TABLE `profiles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 `email` VARCHAR(255) NOT NULL,
 `active` TINYINT(1) NOT NULL default 1,
 PRIMARY KEY(`id`)
);

Add some sample data, using the following SQL statements:

INSERT INTO `profiles`(`id`, `name`, `email`, `active`) VALUES
 (1, 'John Doe', 'john.doe@email.com', 1),
 (2, 'Jane Doe', 'jane.doe@email.com', 1),
 (3, 'Mark Doe', 'mark.doe@email.com', 0);

Next, create the required ProfilesController class in a file named profiles_
controller.php and place it in your app/controllers folder, with the following contents:

<?php
class ProfilesController extends AppController {
 public function index() {

Chapter 6

167

 $profiles = $this->paginate();
 $this->set(compact('profiles'));
 }

 public function edit($id) {
 if (!empty($this->data)) {
 if ($this->Profile->save($this->data)) {
 $this->Session->setFlash('Profile saved');
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 } else {
 $this->data = $this->Profile->find('first', array(
 'conditions' => array('Profile.id' => $id),
 'recursive' => -1
));
 }
 }
}
?>

Create a folder named profiles in your app/views folder, then create the view in a file named
index.ctp and place it in your app/views/profiles folder, with the following contents:

<p>
<?php echo $this->Paginator->prev(); ?>
<?php echo $this->Paginator->numbers(); ?>
<?php echo $this->Paginator->next(); ?>
</p>
<table>
<thead><tr><th>Name</th><th>Email</th><th>Actions</th></tr></thead>
<tbody>
<?php foreach($profiles as $profile) { ?>
 <tr>
 <td><?php echo $profile['Profile']['name']; ?></td>
 <td><?php echo $profile['Profile']['email']; ?></td>
 <td>
 <?php echo $this->Html->link('Edit', array('action'=>'edit',
$profile['Profile']['id'])); ?>
 </td>
 </tr>
<?php } ?>
</tbody></table>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Routing Magic

168

Create the view for the edit action in a file named edit.ctp and place it in your
app/views/profiles folder, with the following contents:

<?php echo $this->Form->create('Profile'); ?>
 <?php echo $this->Form->input('name'); ?>
 <?php echo $this->Form->input('email'); ?>
<?php echo $this->Form->end('Save'); ?>

How to do it...
1.	 We start by adding two prefixes to CakePHP: admin, and manager. Edit your app/

config/core.php file and look for the line that defines the Routing.prefixes
setting. If it is commented out, uncomment it. Then change it to:
Configure::write('Routing.prefixes', array('admin', 'manager'));

2.	 Let us modify the ProfilesController class to add the overridden index
and edit actions for both prefixes. We will also add a new action so that when
accessed with the admin prefix, we can add new profile records. Edit your app/
controllers/profiles_controller.php file and add the following methods
at the beginning of the ProfilesController class:
public function beforeFilter() {
 parent::beforeFilter();
 $prefixes = Configure::read('Routing.prefixes');
 if (!empty($prefixes)) {
 foreach($prefixes as $prefix) {
 $hasPrefix = false;
 if (!empty($this->params['prefix'])) {
 $hasPrefix = ($this->params['prefix'] == $prefix);
 }
 $prefixName = 'is' . Inflector::classify($prefix);
 $this->$prefixName = $hasPrefix;
 $this->set($prefixName, $hasPrefix);
 }
 }
}

public function manager_index() {
 $this->setAction('index');
}

public function manager_edit($id) {
 $this->setAction('edit', $id);
}

public function admin_index() {

Chapter 6

169

 $this->setAction('index');
}

public function admin_edit($id) {
 $this->setAction('edit', $id);
}

public function admin_add() {
 $this->setAction('edit');
}

public function index() {
 $profiles = $this->paginate();
 $this->set(compact('profiles'));
}

3.	 We now need to change the edit action so that it can handle the creation
of new records. While still editing your app/controllers/profiles_
controller.php file, make the following changes to the edit() method of the
ProfilesController class:
public function edit($id = null) {
 if (!empty($id) && !$this->isAdmin && !$this->isManager) {
 $this->redirect(array('action' => 'index'));
 }
 if (!empty($this->data)) {
 if (empty($id)) {
 $this->Profile->create();
 }
 if ($this->Profile->save($this->data)) {
 $this->Session->setFlash('Profile saved');
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 } elseif (!empty($id)) {
 $this->data = $this->Profile->find('first', array(
 'conditions' => array('Profile.id' => $id),
 'recursive' => -1
));
 }
}

4.	 The next step is changing the views. Edit your app/views/profiles/index.ctp
view file and add the following at the end:
<?php
if ($isAdmin) {

Routing Magic

170

 echo $this->Html->link('Create Profile', array('admin' => true,
'action'=>'add'));
}
?>

5.	 Finally, edit your app/views/profiles/edit.ctp view file and make the
following changes:
<?php echo $this->Form->create('Profile'); ?>
 <?php echo $this->Form->input('name'); ?>
 <?php echo $this->Form->input('email'); ?>
 <?php
 if ($isManager || $isAdmin) {
 echo $this->Form->input('active', array(
 'options' => array(1 => 'Yes', 0 => 'No')
));
 }
 ?>
<?php echo $this->Form->end('Save'); ?>

How it works...
Any set of values specified in the configuration setting, Routing.prefixes, act as routing
prefixes. In this example, we have added two prefixes: admin and manager. Whenever we
use a prefix in an URL (where the prefix precedes a normal CakePHP URL), CakePHP will set
the current prefix in $this->params['prefix'] and execute an action whose name is the
same as if the prefix were not used, but preceded with the prefix and an underscore sign, in
the same controller as if the prefix were not used.

When we access http://localhost/manager/profiles/index in our example,
CakePHP will process this request by executing the action manager_index located in the
ProfilesController, and setting $this->params['prefix'] to manager. Knowing
this, we can add controller and view variables to tell actions and views if we are accessing
the application as a manager (when the manager prefix is set) or as an administrator (when
the admin prefix is set.) We implement this through a more general approach by creating an
appropriate controller and view variable for each prefix (isManager for the manager prefix,
and isAdmin for the admin prefix) in the beforeFilter callback.

See also

ff Using prefixes for role based access controller in Chapter 1, Authentication

Chapter 6

171

Working with route elements
Even when GET and named parameters can be useful in most situations, we may need to
further optimize our application URLs for better search engine rankings.

Fortunately, CakePHP provides us with route elements, a solution that maintains the flexibility
of GET and named parameters, and improves the way intra-application URLs are built.

Getting ready
We need some sample data to work with. Follow the Getting ready section of the recipe
Using GET and named parameters.

How to do it...
1.	 We want our article URLs to be further optimized for search engines, so we start by

creating a new route. Edit your app/config/routes.php file and add the following
route at the end of the file:
Router::connect('/article/:category/:id-:title',
 array('controller' => 'articles', 'action' => 'view'),
 array(
 'pass' => array('id'),
 'id' => '\d+',
 'category' => '[^-]+',
 'title' => '[^-]+'
)
);

2.	 As our route defines three elements (id, category, and title), we need to modify
the view to specify the values for those elements. Edit your app/views/articles/
index.ctp view file and make the following changes:
<h1><?php echo $article['Article']['title']; ?></h1>
<p><?php echo $article['Article']['body']; ?></p>
<?php if (!empty($articles)) { ?>

<p>Related articles:</p>

 <?php foreach($articles as $related) { ?>
 <?php echo $this->Html->link(
 $related['Article']['title'],
 array(
 'action'=>'view',
 'id' => $related['Article']['id'],

Routing Magic

172

 'category' => strtolower(Inflector::slug($related['Cat
egory']['name'])),
 'title' => strtolower(Inflector::slug($related['Artic
le']['title']))
)
); ?>
 <?php } ?>

<?php } ?>

How it works...
CakePHP uses the routes defined in the routes.php configuration file to generate URLs, and
parse requested URLs. When we want different URLs than those provided by the framework,
we add new routes to this configuration file.

Routes are created by specifying up to three arguments when calling the
Router::connect() method:

ff The first argument is the route URL, a string representation of our route. It can
include a wildcard and route elements.

ff The second argument is utilized to specify the default route values, an array which
may include plugin, controller, action, and action arguments. You may omit
parts of these default values, for example, to define a route for all actions in a
specific controller.

ff The third argument defines the route elements, an optional array that defines the
route elements a route utilizes. It may also include a list of those elements that
are to be sent as arguments when calling the controller action

Using Router::connect(), we defined a route that includes all these arguments:

ff We set /article/:category/:id-:title as our route URL. Notice how we are
referring to route elements by prefixing their names with a colon.

ff In the second argument, we specify that this route will match any link to the view
action of the articles controller. Similarly, if a URL that matches the route URL
specified in the first argument is requested, this is the action that will be executed.

ff We specify three route elements in the third argument, with their respective regular
expression matching expressions: id (a number), category (any string that does
not include a dash), and title (also a string that does not include a dash.) We use
the special pass option to specify which route elements are passed as regular action
arguments.

Chapter 6

173

When CakePHP finds a URL that includes the same default values as those specified in
the first argument of our route, and also includes the route elements specified in its third
argument, it will convert the route to our provided string representation. For example, if we
create a link using the following statement:

<?php echo $this->Html->link(
 'My article',
 array(
 'controller' => 'articles',
 'action' => 'view',
 'id' => 1,
 'category' => 'my_category',
 'title' => 'my_title'
)
); ?>

We would be matching all our route requirements, and the resulting generated URL would look
like http://localhost/article/my_category/1-my_title.

There's more...
When our controller action is executed as a result of a route that uses route elements, we can
obtain the values for all the specified elements using the $this->params array available to
every controller.

In our example, we set the id route element to be passed as a regular action argument, but
we did not do so for the remaining elements (category and title.) To obtain the given
value for category, we would do:

$category = $this->params['category']

Using reverse routing
Even though CakePHP allows us to specify a string-based URL when creating links, it is
recommended that we always use arrays to define link URLs unless the URL is an absolute
reference to a foreign site.

URLs that are defined using an array allow for the reverse routing system to work, which is the
part of the framework that allows us to use custom routes.

See also
ff Adding catch-all routes for profile pages

ff Using GET and named parameters

Routing Magic

174

Adding catch-all routes for profile pages
Several websites include direct URLs to access user profiles, and those addresses live
alongside a broad set of other URLs. For example, Twitter allows http://twitter.com/
mgiglesias to list tweets created by the user mgiglesias, while an address like
http://twitter.com/about would take us to their service description.

This recipe shows us how to create direct URLs for our profile records, allowing the generated
URLs to coexist with other application routes we may have.

Getting ready
To go through this recipe we need a sample table to work with. Create a table named
profiles, using the following SQL statement:

CREATE TABLE `profiles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `username` VARCHAR(255) NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

Add some sample data, using the following SQL statements:

INSERT INTO `profiles`(`id`, `username`, `name`) VALUES
 (1, 'john', 'John Doe'),
 (2, 'jane', 'Jane Doe');

Proceed now to create the required model. Create a file named profile.php and place it in
your app/models folder, with the following contents:

<?php
class Profile extends AppModel {
}
?>

Create the ProfilesController class in a file named profiles_controller.php and
place it in your app/controllers folder, with the following contents:

<?php
class ProfilesController extends AppController {
 public function index() {
 $profiles = $this->Profile->find('all');
 $this->set(compact('profiles'));
 }

 public function view($username) {

Chapter 6

175

 $profile = $this->Profile->find('first', array(
 'conditions' => array('Profile.username' => $username)
));
 if (empty($profile)) {
 $this->cakeError('error404');
 }
 $this->set(compact('profile'));
 }
}
?>

Create a folder named profiles in your app/views folder. Create the view for the index
action in a file named index.ctp and place it in your app/views/profiles folder, with
the following contents:

<?php foreach($profiles as $profile) { ?>
 <?php echo $this->Html->link($profile['Profile']['name'],
array(
 'action' => 'view',
 'userName' => $profile['Profile']['username']
)); ?>
<?php } ?>

Create the view for the view action in a file named view.ctp and place it in your
app/views/profiles folder, with the following contents:

<h1><?php echo $profile['Profile']['name']; ?></h1>
Username: <?php echo $profile['Profile']['username']; ?>
<p><?php echo $this->Html->link('Profiles', array('action'=>'index'));
?></p>

How to do it...
Edit your app/config/routes.php file and add the following routes at the end of the file:

Router::connect('/:userName',
 array('controller' => 'profiles', 'action' => 'view'),
 array(
 'userName' => '[A-Za-z0-9\._-]+',
 'pass' => array('userName')
)
);

Routing Magic

176

Router::connect('/:controller/index/*', array('action' => 'index'));

If you now browse to http://localhost/profiles/index, you will see that the
generated link for the jane user account is http://localhost/jane. Clicking on it
should show us Jane's profile page, as shown in the following screenshot:

How it works...
We created two routes. The first one uses a route element called userName to set the URL as
consisting solely on its value. Using a regular expression, our route guarantees that it is only
used when the value for userName consists of letters, numbers, dots, dashes, or underscore
signs. Using the controller and action settings, we link the route to the view action of
the profiles controller. Finally, the userName element is set to be passed as a regular
argument to the ProfilesController::view() method.

With this route defined, if we created a link with the following statement:

<?php echo $this->Html->link('My Profile', array(
 'controller' => 'profiles',
 'action' => 'view',
 'userName' => 'john'
)); ?>

The generated URL would be http://localhost/john. Clicking on this link would execute
the same action, using the same arguments, as if we used the URL http://localhost/
profiles/view/john.

Chapter 6

177

However, there is a noticeable problem. CakePHP provides a short URL for the index action
for all our controllers. Because of it, we can access the ProfilesController::index()
method using the URL http://localhost/profiles, the equivalent of the URL http://
localhost/profiles/index. This default route would conflict with our custom route, as
the word profiles matches our regular expression.

Fortunately, this functionality would not conflict with our route when generating a URL out
of an array-based route. Because we linked our route to the view action of the profiles
controller, CakePHP will only use our custom route when linking to this action and specifying
the userName element.

We still need to fix the conflict that is produced when parsing a URL such as http://
localhost/profiles. To do so, we create another route so CakePHP's built-in index
routes are not utilized when producing a link. This route uses the special :controller route
element (set to the controller the link points to), and forcing the index action as part of the
URL. We link this route to all routes that use the index action, regardless of the controller.

To learn about another, more effective approach to this problem, see Creating
custom Route classes

After adding this route, if we created a link with:

<?php echo $this->Html->link('Profiles', array(
 'controller' => 'profiles',
 'action' => 'index'

)); ?>

the generated URL would be http://localhost/profiles/index.

See also
ff Working with route elements

ff Adding validation for catch-all routes

ff Creating custom route classes

Adding validation for catch-all routes
In the recipe Adding catch-all routes for profile pages, we created routes so that profile
pages can be accessed, specifying only the username in the URL.

In this recipe, we will learn how to implement a custom validation method so that these
usernames do not conflict with other custom routes.

Routing Magic

178

Getting ready
We need some sample data to work with, and we need a catch-all route. Follow the entire
recipe Adding catch-all routes for profile pages.

We also need the sign-up page, where new profile records are created. Edit your app/
controller/profiles_controller.php file and place the following method inside
the ProfilesController class definition:

public function add() {
 if (!empty($this->data)) {
 $this->Profile->create($this->data);
 if ($this->Profile->save()) {
 $this->Session->setFlash('Profile created');
 $this->redirect(array(
 'action'=>'view',
 'userName' => $this->data['Profile']['username']
));
 } else {
 $this->Session->setFlash('Please correct the errors below');
 }
 }
}

Create the appropriate view in a file named add.ctp and place it in your app/views/
profiles folder, with the following contents:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'username',
 'name'
));
echo $this->Form->end('Save');
?>

We also need a custom route to try out the validation. Edit your app/config/routes.php
file and add the following route at the beginning:

Router::connect('/home', array(
 'controller' => 'pages', 'action' => 'display', 'home'
));

Chapter 6

179

How to do it...
1.	 Edit your app/models/profile.php file and make the following changes:

<?php
class Profile extends AppModel {
 public $validate = array(
 'username' => array(
 'notEmpty',
 'valid' => array(
 'rule' => 'validateUsername',
 'message' => 'This user name is reserved'
)
),
 'name' => 'notEmpty'
);
}

?>

2.	 While still editing your app/models/profile.php file, add the following method to
the Profile class:
public function validateUsername($value, $params) {
 $reserved = Router::prefixes();

 $controllers = array_diff(
 Configure::listObjects('controller'),
 (array) 'App'
);
 if (!empty($controllers)) {
 $reserved = array_merge($reserved, array_
map(array('Inflector', 'underscore'), $controllers));
 }

 $routes = Router::getInstance()->routes;
 if (!empty($routes)) {
 foreach($routes as $route) {
 if (!empty($route->template) && preg_match('/^\/
([^\/:]+)/', $route->template, $matches)) {
 $reserved[] = strtolower($matches[1]);
 }
 }
 }

 return !in_array(strtolower(array_shift($value)), $reserved);
}

Routing Magic

180

If you now browse to http://localhost/profiles/add and specify home as the user
name and Mark Doe as the name, you will get a validation error message informing you that
the username is reserved, as shown in the following screenshot:

How it works...
First we add validation rules for two fields: username, and name. The validation for the
username field consists of two rules: a built-in notEmpty rule, and a custom validation
rule named validateUsername. The name field has only one rule: notEmpty.

In our validateUsername rule implementation, we start by storing all routing
prefixes into a list of reserved words. We then get a list of all controllers, using the
Configure::listObjects() method, and excluding the value App, which is the
base of our controllers (and as such not directly accessible). Then we convert each
name to its lower case, underscored form.

We then obtain the list of all defined routes by getting the instance of the Router class
and accessing its routes public property, and for each of those routes we look for their
template property.

Chapter 6

181

This property stores the string representation of a route. For the route we defined during the
Getting ready section, this would be /home. We are only interested in the starting portion
of this value (that is, anything after the first slash, and before the second one), so we use a
regular expression to match and extract that value, and then we add it to the list of reserved
words.

In our example, the list of reserved words would be: pages, profiles, and home. The first
two come from the list of our application controllers, and the last one comes from our custom
route.

Once we have the list of reserved words, we set the field as valid only if the given value is not
within this list.

See also
ff Adding catch-all routes for profile pages

Creating custom Route classes
In the recipe Adding catch-all routes for profile pages we created routes so that profile pages
can be accessed specifying only the user name in the URL. However, that implementation had
a problem: we had to disallow the automatic access of the index action.

This recipe shows a different approach to our profile URL generation, by creating a custom
route implementation that not only overcomes this problem, but makes sure the route is
utilized only for existing profile records.

Getting ready
We need some sample data to work with. Follow the Getting ready section of the recipe
Adding catch-all routes for profile pages.

How to do it...
1.	 Edit your app/config/routes.php file and add the following routes at the end of

the file:
App::import('Lib', 'ProfileRoute');
Router::connect('/:userName',
 array('controller' => 'profiles', 'action' => 'view'),
 array(
 'routeClass' => 'ProfileRoute',
 'pass' => array('userName')
)
);

Routing Magic

182

2.	 Now create a file named profile_route.php and place it in your app/libs
folder, with the following contents:
<?php
App::import('Core', 'Router');
class ProfileRoute extends CakeRoute {
 public function match($url) {
 if (!empty($url['userName']) && $this->_
exists($url['userName'])) {
 return parent::match($url);
 }
 return false;
 }

 public function parse($url) {
 $params = parent::parse($url);
 if (!empty($params) && $this->_exists($params['userName']))
{
 return $params;
 }
 return false;
 }

 protected function _exists($userName) {
 $userNames = Cache::read('usernames');
 if (empty($userNames)) {
 $profiles = ClassRegistry::init('Profile')->find('all',
array(
 'fields' => array('username'),
 'recursive' => -1
));
 if (!empty($profiles)) {
 $userNames = array_map(
 'strtolower',
 Set::extract('/Profile/username', $profiles)
);
 Cache::write('usernames', $userNames);
 }
 }
 return in_array($userName, (array) $userNames);
 }
}

?>

Chapter 6

183

3.	 Next, edit your app/models/profile.php file and add the following methods to
the Profile class:
public function afterSave($created) {
 parent::afterSave($created);
 Cache::delete('usernames');
}

public function afterDelete() {
 parent::afterDelete();
 Cache::delete('usernames');

}

You can now browse to http://localhost/john to see John's profile page. Specifying an
invalid name in the URL (such as http://localhost/kate) would produce the regular
CakePHP error page, while browsing to http://localhost/profiles will correctly take us
to the profile index page.

How it works...
We start by first importing our custom route class file, and then defining a catch-all route for
the view action of the profiles controller, using the custom ProfileRoute class, and
setting the userName route element to be passed as a regular argument.

The ProfileRoute implementation implements two of the most typical route class methods:

1.	 match(): It is used during reverse routing to convert an array-based URL into its
string representation. If the method returns false, then the provided URL does not
fall into this route.

2.	 parse(): It is used when parsing a requested URL into an array-based URL,
specifying controller, action, and other parameters. If the method returns
false, then this tells CakePHP that the given URL is not handled by this route.

We created a helper method, called _exists(), to assist us, which looks for the given
username amongst the registered records. We cache the list of usernames for obvious
performance reasons, and we invalidate this cache whenever a record is created, modified, or
deleted, by implementing the afterSave and afterDelete callbacks in the Profile model.

Our match() implementation first checks to make sure the userName route element is
provided. If so, and if the given user exists, it will use the parent implementation to return
the string representation. In any other case (no username provided, or nonexistent), it will
not process the given URL.

Routing Magic

184

The parse() implementation starts by calling its parent implementation to convert the string
URL into an array based URL. If that call is successful (which means it contains the userName
route element), and if the given user name exists, it returns the conversion. Otherwise it
returns false to not process the given URL. Another route handler, or CakePHP's default
route handler, will process it.

See also
ff Adding catch-all routes for profile pages

ff Custom route classes

7
Creating and

Consuming Web
Services

In this chapter, we will cover:

ff Creating an RSS feed

ff Consuming a JSON service

ff Building REST services with JSON

ff Adding authentication to REST services

ff Implementing token-based authorization for API access

Introduction
Web services are essential when looking forward to expose application functionality to
third-party applications, or when looking forward to integrate foreign services into our own
applications. They offer a broad set of technologies and definitions so that systems written in
different programming languages can communicate.

This chapter introduces a set of recipes to consume web services, and to expose parts of our
application as web services.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating and Consuming Web Services

186

Creating an RSS feed
RSS feeds are a form of web services, as they provide a service, over the web, using a known
format to expose data. Due to their simplicity, they are a great way to introduce us to the world
of web services, particularly as CakePHP offers a built in method to create them.

In the recipe Consuming RSS feeds with a datasource from Chapter 5, Datasources, we
learned how to fetch content from a foreign RSS feed. In this recipe, will do exactly the
opposite: produce a feed for our site that can be used by other applications.

Getting ready
To go through this recipe we need a sample table to work with. Create a table named posts,
using the following SQL statement:

CREATE TABLE `posts`(posts
 `id` INT NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `body` TEXT NOT NULL,
 `created` DATETIME NOT NULL,
 `modified` DATETIME NOT NULL,
 PRIMARY KEY(`id`)
);

Add some sample data, using the following SQL statements:

INSERT INTO `posts`(`title`,posts `body`, `created`, `modified`)
VALUES
 ('Understanding Containable', 'Post body', NOW(), NOW()),
 ('Creating your first test case', 'Post body', NOW(), NOW()),
 ('Using bake to start an application', 'Post body', NOW(), NOW()),
 ('Creating your first helper', 'Post body', NOW(), NOW()),
 ('Adding indexes', 'Post body', NOW(), NOW());

We proceed now to create the required controller. Create the class PostsController in a
file named posts_controller.php and place it in your app/controllers folder, with
the following contents:

<?php
class PostsController extends AppController {
 public function index() {
 $posts = $this->Post->find('all');
 $this->set(compact('posts'));
 }

}
?>

Chapter 7

187

Create a folder named posts in your app/views folder, and then create the index view in
a file named index.ctp and place it in your app/views/posts folder, with the following
contents:

<h1>Posts</h1>
<?php if (!empty($posts)) { ?>

 <?php foreach($posts as $post) { ?>
 <?php echo $this->Html->link(
 $post['Post']['title'],
 array(
 'action'=>'view',
 $post['Post']['id']
)
); ?>
 <?php } ?>

<?php } ?>

How to do it...
1.	 Edit your app/config/routes.php file and add the following statement at the end:

Router::parseExtensions('rss');

2.	 Edit your app/controllers/posts_controller.php file and add the following
property to the PostsController class:
public $components = array('RequestHandler');

3.	 While still editing PostsController, make the following changes to the index()
method:
public function index() {
 $options = array();
 if ($this->RequestHandler->isRss()) {
 $options = array_merge($options, array(
 'order' => array('Post.created' => 'desc'),
 'limit' => 5
));
 }
 $posts = $this->Post->find('all', $options);
 $this->set(compact('posts'));
}

Creating and Consuming Web Services

188

4.	 Create a folder named rss in your app/views/posts folder, and inside the rss
folder create a file named index.ctp, with the following contents:
<?php
$this->set('channel', array(
 'title' => 'Recent posts',
 'link' => $this->Rss->url('/', true),
 'description' => 'Latest posts in my site'
));

$items = array();
foreach($posts as $post) {
 $items[] = array(
 'title' => $post['Post']['title'],
 'link' => array('action'=>'view', $post['Post']['id']),
 'description' => array('cdata'=>true, 'value'=>$post['Post']
['body']),
 'pubDate' => $post['Post']['created']
);
}

echo $this->Rss->items($items);
?>

5.	 Edit your app/views/posts/index.ctp file and add the following at the end of
the view:

<?php echo $this->Html->link('Feed', array('action'=>'index',
'ext'=>'rss')); ?>

If you now browse to http://localhost/posts, you should see a listing of posts
with a link entitled Feed. Clicking on this link should produce a valid RSS feed, as
shown in the following screenshot:

Chapter 7

189

If you view the source of the generated response, you can see that the source for the first item
within the RSS document is:

<item>
<title>Understanding Containable</title>
<link>http://rss.cookbook7.kramer/posts/view/1</link>
<description><![CDATA[Post body]]></description>
<pubDate>Fri, 20 Aug 2010 18:55:47 -0300</pubDate>
<guid>http://rss.cookbook7.kramer/posts/view/1</guid>
</item>

Creating and Consuming Web Services

190

How it works...
We started by telling CakePHP that our application accepts the rss extension with a call to
Router::parseExtensions(), a method that accepts any number of extensions. Using
extensions, we can create different versions of the same view. For example, if we wanted to
accept both rss and xml as extensions, we would do:

Router::parseExtensions('rss', 'xml');

In our recipe, we added rss to the list of valid extensions. That way, if an action is accessed using
that extension, for example, by using the URL http://localhost/posts.rss, then CakePHP
will identify rss as a valid extension, and will execute the ArticlesController::index()
action as it normally would, but using the app/views/posts/rss/index.ctp file to render
the view. The process also uses the file app/views/layouts/rss/default.ctp as its layout,
or CakePHP's default RSS layout if that file is not present.

We then modify how ArticlesController::index() builds the list of posts, and use the
RequestHandler component to see if the current request uses the rss extension. If so, we
use that knowledge to change the number and order of posts.

In the app/views/posts/rss/index.ctp view, we start by setting some view variables.
Because a controller view is always rendered before the layout, we can add or change view
variables from the view file, and have them available in the layout. CakePHP's default RSS
layout uses a $channel view variable to describe the RSS feed. Using that variable, we set
our feed's title, link, and description.

We proceed to output the actual item files. There are different ways to do so, the first one is
making a call to the RssHelper::item() method for each item, and the other one requires
only a call to RssHelper::items(), passing it an array of items. We chose the latter
method due to its simplicity.

While we build the array of items to be included in the feed, we only specify title, link,
description, and pubDate. Looking at the generated XML source for the item, we can infer
that the RssHelper used our value for the link element as the value for the guid (globally
unique identifier) element.

Note that the description field is specified slightly differently than the values for the other
fields in our item array. This is because our description may contain HTML code, so we want
to make sure that the generated document is still a valid XML document.

By using the array notation for the description field, a notation that uses the value index
to specify the actual value on the field, and by setting cdata to true, we are telling the
RssHelper (actually the XmlHelper from which RssHelper descends) that the field should
be wrapped in a section that should not be parsed as part of the XML document, denoted
between a <![CDATA[prefix and a]]> postfix.

Chapter 7

191

The final task in this recipe is adding a link to our feed that is shown in the index.ctp view
file. While creating this link, we set the special ext URL setting to rss. This sets the extension
for the generated link, which ends up being http://localhost/posts.rss.

Adding view caching to an RSS feed
Our feeds may be consumed by feed search crawlers. If we are lucky, we may get tons and
tons of requests looking for updates to our blog. It is unlikely that we will update our blog so
often that we would have new posts every second, so our server load may force us to add
some caching.

When looking to improve performance, some developers are content to only cache their
database queries. In our recipe, this would mean caching the results obtained from our
$this->Post->find('all') call. Unless we have our database engine on a separate
server that suffers from some considerable network latency, chances are this sort of caching
will offer little or no benefit.

A much better solution is to use view caching. That is, caching the generated RSS feed, and
using that cached document whenever a request is made to our feed, provided we are within
the cache time. Fortunately, CakePHP offers us a view-caching implementation right from the
dispatcher, speeding up the request considerably. If a cached view file is found, that file is
rendered directly to the client, without any intervention by the controller, or the need to load
models, components, or helpers.

We want to add caching only when our PostsController::index() action is accessed
with the rss extension. That is, we don't want to cache the listing of posts, but its feed. So we
will make sure to only specify caching information when a feed is requested. In fact, we are
going to cache all actions in our PostsController whenever the rss extension is used.

The first thing we need to do is tell CakePHP to take view caching into account. Edit your
app/config/core.php file and uncomment the following line:

Configure::write('Cache.check', true);

Next, edit your app/controllers/posts_controller.php file and add the Cache
helper to the PostsController class. Without it, view caching will simply not work:

public $helpers = array('Cache');

While still editing the PostsController class, add the following method:

public function beforeFilter() {
 parent::beforeFilter();
 if ($this->RequestHandler->isRss()) {
 $this->cacheAction = array($this->action => '1 hour');
 }
}

Creating and Consuming Web Services

192

In this beforeFilter() implementation, we are checking to see if the current request was
made using the rss extension. If so, we add the current action (whatever that may be) to the
list of cached actions, and set the cache time to be 1 hour.

If we access the feed multiple times within the hour, we should see the same feed we have
been getting so far, but coming from the cache instead of being built in real time.

See also

ff Consuming RSS feeds with a datasource in Chapter 5, Datasources

ff Building REST services with JSON

Consuming a JSON service
JSON (JavaScript Object Notation) is probably one of the best formats available for exposing
data, due to its easy-to-read syntax, which greatly simplifies the parsing. In fact, PHP (as of
its 5.2.0 release) provides built-in methods to convert data from a JSON-formatted string to a
PHP native data type and from PHP types to JSON.

In this recipe, we will learn how to use the HttpSocket class to consume a JSON service
from a foreign site. This time, we are going to use the YouTube JSON API to allow our users to
search for YouTube videos that match a given search query.

The JSON service we will be consuming from YouTube uses a variant of JSON, called JSON-C.
JSON-C is nothing more than JSON, but Google is making a distinction between what YouTube
used to provide as JSON, and the new version it is now producing. YouTube's JSON-C-based
responses are far simpler than their JSON service. Consequently, Google has decided to
deprecate JSON in favor of JSON-C in the near future.

How to do it...
1.	 Start by creating the main controller in a file named videos_controller.php

and place it in your app/controllers folder, with the following contents:
<?php
class VideosController extends AppController {
 public function index() {
 if (!empty($this->data)) {
 $videos = $this->Video->search($this->data);
 $this->set(compact('videos'));
 }
 }
}
?>

Chapter 7

193

2.	 Create the required model in a file named video.php and place it in your
app/models folder, with the following contents:
<?php
App::import('Core', 'HttpSocket');
class Video extends AppModel {
 public $useTable = false;
 protected $_httpSocket;

 public function __construct($id = false, $table = null, $ds =
null) {
 parent::__construct($id, $table, $ds);
 $this->_httpSocket = new HttpSocket();
 }

 public function search($data) {
 $query = !empty($data[$this->alias]['q']) ?
 $data[$this->alias]['q'] :
 '';

 $this->_httpSocket->reset();
 $response = $this->_httpSocket->get(
 'http://gdata.youtube.com/feeds/api/videos',
 array(
 'v' => '2',
 'alt' => 'jsonc',
 'q' => $query,
 'orderby' => 'updated'
)
);

 $videos = array();
 if (!empty($response)) {
 $response = json_decode($response);
 if (empty($response) || empty($response->data->items)) {
 return $videos;
 }

 foreach($response->data->items as $item) {
 $videos[] = array('Video' => array(
 'url' => $item->player->default,
 'title' => $item->title,
 'uploaded' => strtotime($item->uploaded),
 'category' => $item->category,
 'description' => $item->description,
 'thumbnail' => $item->thumbnail->sqDefault
));

Creating and Consuming Web Services

194

 }
 }
 return $videos;
 }
}
?>

3.	 Create a view folder named videos in your app/views folder. Then, create a file
named index.ctp and place it in your app/views/videos folder, with the
following contents:
<?php
echo $this->Form->create();
echo $this->Form->input('q', array('label'=>'Search terms:'));
echo $this->Form->end('Search');

if (!empty($videos)) {
 ?>
 <h1>Search results</h1>
 <?php foreach($videos as $video) { ?>
 <div style="float: left; clear: both; margin-bottom: 10px;">
 <h4><?php echo $this->Html->link($video['Video']['title'],
$video['Video']['url']); ?></h4>
 <?php echo $this->Html->image($video['Video']['thumbnail'],
array(
 'url' => $video['Video']['url'],
 'align' => 'left',
 'style' => 'margin-right: 10px;'
)); ?>
 <p><?php echo $video['Video']['description']; ?></p>

 <p><small>
 Uploaded on <?php echo date('F d, Y H:i', $video['Video']
['uploaded']); ?>
 in <?php echo $video['Video']['category']; ?>
 -
 <?php echo $this->Html->link('PLAY', $video['Video']
['url']); ?>
 </small></p>
 </div>
 <?php
 }
}
?>

Chapter 7

195

If you now browse to http://localhost/videos, you will see a search form.
Entering CakePHP and clicking the button Search should give you a set of results
similar to those shown in the following screenshot:

How it works...
The controller class (ArticlesController) and the view file (index.ctp) have no
connection with the underlying web service we are consuming. In fact, if you look closely at
their code, they look like a regular controller and a standard view file. This is because we
decided to encapsulate the service logic in a model.

Doing so allows us to change how we communicate with the service provider without having
to modify neither the controller nor the view. That is one of the many advantages of the MVC
(Model View Controller) architecture that is the foundation of CakePHP.

We could have taken a more complex approach, and decided to build a datasource to interact
with the server. Instead, we chose a simpler route, by creating a model method that would
perform the actual search and return the results in a data format typical of any CakePHP
application.

Creating and Consuming Web Services

196

This is what the Video model is there for. As there's no underlying table for our videos, we
set the model $useTable property to false. We also import the HttpSocket class, part of
CakePHP's core, because it will be the mechanism we will use to communicate with the server.

The search() method is where the magic happens. The first thing we do is extract the
search terms out of the submitted data. We then create an instance of HttpSocket,
and use its get method to perform the request.

HttpSocket::get() takes three parameters:

ff $uri: The URL to which we are making the request. This can be either a string, or an
array that contains the different elements of the URL, such as scheme, host, port,
and path.

ff $query: An array of parameters to append to the URL. The indexes in this array
are the parameter names and the values their respective values.

ff $request: An array with any additional request information to send to the URL,
such as method, header, and body.

In our case we specify the URL to the YouTube video API, and we set the following query
parameters:

ff v: The API version to use.

ff alt: The format to get results in.

ff q: The query to use for searching.

ff orderby: The order in which to get the results.

Once we get the response, we decode it using PHP's json_decode() function, which
converts a JSON string into a PHP object or to null if it is not a valid JSON string. For
example, the following JSON:

{
 "name": "Mariano Iglesias",
 "profile": {
 "url": "http://marianoiglesias.com.ar"
 }
}

Would be evaluated to a PHP class with two public attributes: name, and profile. The
profile attribute will itself be a class, with one public attribute: url. If we had the above
JSON string in a variable called $json, the following code would output Mariano Iglesias
has a website in http://marianoiglesias.com.ar:

$user = json_decode($json);
echo $user->name . ' has a website in ' . $user->profile->url;

Chapter 7

197

Back to the Video::search() method. Once we have decoded the JSON response,
we check to make sure there are resulting videos available in the $response->data-
>items property. If so, we iterate through them, and we add elements to our response array,
specifying only a subset of the data we obtained.

Once we have the data prepared, we return it back to the controller, which sends it to the
view to render the results.

See also

ff Chapter 5, Datasources

ff Building REST services with JSON

Building REST services with JSON
In the recipe Consuming a JSON service, we learnt how lightweight and convenient the JSON
format can be for exchanging data. What happens if we not only want to expose data using
JSON, but also allow the possibility to modify it? This is one of the reasons why the REST
architecture exists. REST stands for Representational State Transfer, and is no more than
a set of principles that guide the concepts that describe its proper implementation.

One of these main principles is that the client-server communication that is part of a REST
request should be stateless. This means that no context exists in the server between
requests from a specific client. All the information required to perform an operation is part
of the request.

In this recipe, we will learn how to add REST services to an application, using JSON as their
exchange format. These services will allow any foreign application to get data from a post,
create new posts, or delete existing posts.

Getting ready
To go through this recipe we need sample data to work with. Follow the Getting ready section
of the Creating an RSS feed recipe.

Create the Post model in a file named post.php and place it in your app/models folder,
with the following contents. With the validation option, required, we are telling CakePHP
that these fields should always be present when creating or modifying records:

<?php
class Post extends AppModel {
 public $validate = array(
 'title' => array('required'=>true, 'rule'=>'notEmpty'),
 'body' => array('required'=>true, 'rule'=>'notEmpty')

Creating and Consuming Web Services

198

);
}
?>

Let us add actions for creating, editing, and deleting posts. Edit your app/controllers/
posts_controller.php file and add the following methods to the PostsController
class:

public function add() {
 $this->setAction('edit');
}

public function edit($id=null) {
 if (!empty($this->data)) {
 if (!empty($id)) {
 $this->Post->id = $id;
 } else {
 $this->Post->create();
 }
 if ($this->Post->save($this->data)) {
 $this->Session->setFlash('Post created successfully');
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Please correct the errors marked
below');
 }
 } elseif (!empty($id)) {
 $this->data = $this->Post->find('first', array(
 'conditions' => array('Post.id' => $id)
));
 if (empty($this->data)) {
 $this->cakeError('error404');
 }
 }
 $this->set(compact('id'));
}

public function delete($id) {
 $post = $this->Post->find('first', array(
 'conditions' => array('Post.id' => $id)
));
 if (empty($post)) {
 $this->cakeError('error404');
 }

 if (!empty($this->data)) {
 if ($this->Post->delete($id)) {

Chapter 7

199

 $this->Session->setFlash('Post deleted successfully');
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Could not delete post');
 }
 }
 $this->set(compact('post'));
}

We now need to add their respective views. Create a file named edit.ctp and place it in
your app/views/posts folder, with the following contents:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'title',
 'body'
));
echo $this->Form->end('Save');
?>

Create a file named delete.ctp and place it in your app/views/posts folder, with the
following contents:

<p>Click the Delete button to delete
the post <?php echo $post['Post']['title']; ?></p>
<?php
echo $this->Form->create(array('url'=>array('action'=>'delete',
$post['Post']['id'])));
echo $this->Form->hidden('Post.id', array('value'=>$post['Post']
['id']));
echo $this->Form->end('Delete');
?>

Modify the app/views/posts/index.ctp to add links to these actions by changing the
whole view to the following:

<h1>Posts</h1>
<?php if (!empty($posts)) { ?>

 <?php foreach($posts as $post) { ?>

 <?php echo $this->Html->link($post['Post']['title'], array(
 'action'=>'view',
 $post['Post']['id']
)); ?>
 :

Creating and Consuming Web Services

200

 <?php echo $this->Html->link('Edit', array(
 'action'=>'edit',
 $post['Post']['id']
)); ?>
 -
 <?php echo $this->Html->link('Delete', array(
 'action'=>'delete',
 $post['Post']['id']
)); ?>

 <?php } ?>

<?php } ?>
<?php echo $this->Html->link('Create new Post',
array('action'=>'add')); ?>

How to do it...
1.	 Edit your app/config/routes.php file and add the following statement at the end:

Router::parseExtensions('json');

2.	 Edit your app/controllers/posts_controller.php file and add the following
property to the PostsController class:
public $components = array('RequestHandler');

3.	 Create a folder named json in your app/views/layouts folder, and inside the
json folder, create a file named default.ctp, with the following contents:
<?php

echo $content_for_layout;
?>

4.	 Create a folder named json in your app/views/posts folder, and inside the json
folder, create a file named index.ctp, with the following contents:
<?php
foreach($posts as $i => $post) {
 $post['Post']['url'] = $this->Html->url(array(
 'action'=>'view',
 $post['Post']['id']
), true);
 $posts[$i] = $post;
}
echo json_encode($posts);
?>

Chapter 7

201

5.	 Edit your app/controllers/posts_controller.php file and add the following
method to the end of the PostsController class:
protected function _isJSON() {
 return $this->RequestHandler->ext == 'json';
}

6.	 Edit the PostsController::index() method and make the following changes:
public function index() {
 if ($this->_isJSON() && !$this->RequestHandler->isGet()) {
 $this->redirect(null, 400);
 }

 $posts = $this->Post->find('all');
 $this->set(compact('posts'));
}

7.	 Add the following methods to the beginning of the PostsController class below
the declaration of the components property:
public function beforeFilter() {
 parent::beforeFilter();
 if (
 $this->_isJSON() &&
 !$this->RequestHandler->isGet()
) {
 if (empty($this->data) && !empty($_POST)) {
 $this->data[$this->modelClass] = $_POST;
 }
 }
}

public function beforeRender() {
 parent::beforeRender();
 if ($this->_isJSON()) {
 Configure::write('debug', 0);
 $this->disableCache();
 }
}

8.	 Edit the PostsController::edit() method and make the following changes:
public function edit($id=null) {
 if ($this->_isJSON() && !$this->RequestHandler->isPost()) {
 $this->redirect(null, 400);
 }

Creating and Consuming Web Services

202

 if (!empty($this->data)) {
 if (!empty($id)) {
 $this->Post->id = $id;
 } else {
 $this->Post->create();
 }
 if ($this->Post->save($this->data)) {
 $this->Session->setFlash('Post created successfully');
 if ($this->_isJSON()) {
 $this->redirect(null, 200);
 } else {
 $this->redirect(array('action'=>'index'));
 }
 } else {
 if ($this->_isJSON()) {
 $this->redirect(null, 403);
 } else {
 $this->Session->setFlash('Please correct the errors
marked below');
 }
 }
 } elseif (!empty($id)) {
 $this->data = $this->Post->find('first', array(
 'conditions' => array('Post.id' => $id)
));
 if (empty($this->data)) {
 if ($this->_isJSON()) {
 $this->redirect(null, 404);
 }
 $this->cakeError('error404');
 }
 }
 $this->set(compact('id'));
}

9.	 Edit the PostsController::delete() method and make the following changes:
public function delete($id) {
 if ($this->_isJSON() && !$this->RequestHandler->isDelete()) {
 $this->redirect(null, 400);
 }

 $post = $this->Post->find('first', array(
 'conditions' => array('Post.id' => $id)

Chapter 7

203

));
 if (empty($post)) {
 if ($this->_isJSON()) {
 $this->redirect(null, 404);
 }
 $this->cakeError('error404');
 }

 if (!empty($this->data) || $this->RequestHandler->isDelete()) {
 if ($this->Post->delete($id)) {
 $this->Session->setFlash('Post deleted successfully');
 if ($this->_isJSON()) {
 $this->redirect(null, 200);
 } else {
 $this->redirect(array('action'=>'index'));
 }
 } else {
 if ($this->_isJSON()) {
 $this->redirect(null, 403);
 } else {
 $this->Session->setFlash('Could not delete post');
 }
 }
 }
 $this->set(compact('post'));
}

To test these services, we are going to create a small CakePHP shell that will create a new
post, edit the created post, delete it, and show the list of posts throughout the process.
Create a file named consume.php and place it in your app/vendors/shells folder,
with the following contents:

<?php
App::import('Core', 'HttpSocket');
class ConsumeShell extends Shell {
 protected static $baseUrl;
 protected static $httpSocket;

 public function main() {
 if (empty($this->args) || count($this->args) != 1) {
 $this->err('USAGE: cake consume <baseUrl>');
 $this->_stop();
 }

 self::$baseUrl = $this->args[0];

Creating and Consuming Web Services

204

 $this->test();
 }

 protected function test() {
 $this->request('/posts/add.json', 'POST', array(
 'title' => 'New Post',
 'body' => 'Body for my new post'
));

 $lastId = $this->listPosts();
 $this->hr();

 $this->request('/posts/edit/'.$lastId.'.json', 'POST', array(
 'title' => 'New Post Title',
 'body' => 'New body for my new post'
));

 $this->listPosts();
 $this->hr();

 $this->request('/posts/delete/'.$lastId.'.json', 'DELETE');

 $this->listPosts();
 }

 protected function request($url, $method='GET', $data=null) {
 if (!isset(self::$httpSocket)) {
 self::$httpSocket = new HttpSocket();
 } else {
 self::$httpSocket->reset();
 }

 $body = self::$httpSocket->request(array(
 'method' => $method,
 'uri' => self::$baseUrl . '/' . $url,
 'body' => $data
));

 if ($body === false || self::$httpSocket->response['status']
['code'] != 200) {
 $error = 'ERROR while performing '.$method.' to '.$url;
 if ($body !== false) {
 $error = '[' . self::$httpSocket->response['status']
['code'] . '] ' . $error;
 }
 $this->err($error);
 $this->_stop();
 }

 return $body;
 }

Chapter 7

205

 protected function listPosts() {
 $response = json_decode($this->request('/posts.json'));
 $lastId = null;
 foreach($response as $item) {
 $lastId = $item->Post->id;
 $this->out($item->Post->title . ': ' . $item->Post->url);
 }
 return $lastId;
 }
}
?>

To run this shell script, invoke it with one argument: the base URL of your application.
So change http://localhost below to suit your application's URL:

ff If you are on a GNU Linux / Mac / Unix system:
../cake/console/cake consume http://localhost

ff If you are on Microsoft Windows:

..\cake\console\cake.bat consume http://localhost

The output should be similar to that shown in the following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Creating and Consuming Web Services

206

We can see that the first list of posts shows our newly created post entitled New Post. The
second list shows how we successfully changed its title to New Post Title, and the third list
shows how we deleted the post.

How it works...
Similarly to what was described in the Creating an RSS feed recipe, we started by specifying
json as a valid extension and added the RequestHandler component to our list of
components.

Unlike the rss and xml extensions, CakePHP does not provide a default layout for json, so
we need to create one. Through the beforeRender callback, we turn debugging off, and we
disable caching when a JSON request is made, to avoid any information that would break the
JSON syntax and prevent client browsers from caching JSON requests.

When a JSON request is made to a controller that uses the
RequestHandler component, the component will automatically
set the content type of the response to application/json.

Once we have our layout, we are ready to start implementing our JSON views. In this recipe,
we only implement index() as a JSON action that returns JSON data through a view. All
the other actions—add(), edit(), and delete()—will simply use HTTP status codes to
communicate with the client. The JSON index.ctp view will simply add the full URL for each
post, and echo the whole data structure as a JSON-formatted string using json_encode().

As we will be changing some of the controller logic depending on the type of access (JSON
versus normal access), we add a method named _isJSON() to our controller. This method
uses the ext property of the RequestHandler component, which is set to the extension
with which our action is requested. If no extension is used, and then it defaults to html.
Using this property, we can check when a request is made using the json extension.

With _isJSON(), we can also add some extra checks to our methods, to make sure they are
requested the proper way. For our index action, we make sure that if the request is made
with JSON, we only allow GET requests to go through. If the request was made with any other
method, for example, with POST, then we return an HTTP status of 400 (Bad Request), and we
exit the application.

When no data needs to be sent back to the client, HTTP status codes are a
great way to inform if a REST request has succeeded or failed.

Chapter 7

207

To help users of our REST requests, we should allow them to POST data without having to
know how the data needs to be formatted for CakePHP to process it automatically. Therefore,
we override the beforeFilter callback, so if a request is made with JSON that is not a
GET request, and if CakePHP did not find any data properly formatted (when data was indeed
posted), then we set what was posted as the controller data. This way, when creating or
modifying posts, client code can simply use title to refer to the post title field, rather
than having to use data[Post][title] as the name for the field.

We then proceed to make the necessary modifications to the edit() method. We start by
making sure that we were accessing with the proper method (POST), and we change how
we report success or failure: with an HTTP status of 200 (OK) when the post is saved, 403
(Forbidden) if the post cannot be saved, or 404 (Not Found) if trying to edit a post that does
not exist.

The modifications to the delete() method are almost identical to the ones made to the
edit() method. The two main differences are that the expected method is DELETED, and
that we don't enforce data to be posted when being accessed through JSON.

To test the code in this recipe, we built a shell script to consume our REST services. This
script uses the HttpSocket class to fetch the content. In this shell script, we built a generic
request() function that takes a URL, a method (we use GET, POST, and DELETE), and an
optional array of data to post.

We use the request() method to create a new post (notice how we specify the values for
the title and body fields), get the list of posts that should include our newly created post,
modify the created post, and finally delete it.

See also
ff Creating an RSS feed

ff Adding authentication to REST services

Adding authentication to REST services
In the previous recipe, Building REST services with JSON, we learnt how to enable JSON
access to our actions, including the ability to create, modify, or delete posts with a simple
JSON request.

Modification of data through REST requests can lead to sensitive data loss if we don't add
some sort of authentication. This recipe shows us how to enforce that our data-changing
REST services are only utilized by valid users using HTTP Basic Authentication.

Creating and Consuming Web Services

208

Getting ready
To go through this recipe, we need some JSON-based REST services implemented. Follow the
entire recipe Building REST services with JSON.

We also need a working authentication for our application. Follow the entire recipe Setting up
a basic authentication system in the Authentication chapter.

How to do it...
Edit your app/controller/posts_controller.php file and make the following changes
to the beforeFilter callback:

public function beforeFilter() {
 parent::beforeFilter();

 if ($this->_isJSON()) {

 $this->Auth->allow($this->action);

 $this->Security->loginOptions = array(

 'type' => 'basic',

 'realm' => 'My REST services,services

 'login' => '_restLogin'

);

 $this->Security->requireLogin($this->action);

 $this->Security->validatePost = false;

 }

 if (
 $this->_isJSON() &&
 !$this->RequestHandler->isGet()
) {
 if (empty($this->data) && !empty($_POST)) {
 $this->data[$this->modelClass] = $_POST;
 }
 }
}

While still editing the PostsController class, add the following method below the
beforeFilter() method:

public function _restLogin($credentials) {
 $login = array();
 foreach(array('username', 'password') as $field) {
 $value = $credentials[$field];
 if ($field == 'password' && !empty($value)) {

Chapter 7

209

 $value = $this->Auth->password($value);
 }
 $login[$this->Auth->fields[$field]] = $value;
 }

 if (!$this->Auth->login($login)) {
 $this->Security->blackhole($this, 'login');
 }
}

If we now browse to http://localhost/posts, we will be presented with a login
screen. As there are no users in the system, we need to create one by browsing to
http://localhost/users/add, and specifying the desired user name and password.

Let us run the test shell script (remember to change http://localhost to suit your
application's base URL).

ff If you are on a GNU Linux / Mac / Unix system:
../cake/console/cake consume http://localhost

ff If you are on Microsoft Windows:

..\cake\console\cake.bat consume http://localhost

Its output would inform us that the creation of the post fails with a 401 (Unauthorized) status
code, as shown in the following screenshot:

If you haven't done so already while following the recipe Setting up a basic authentication
system, create a user account by browsing to http://localhost/users/add and
specifying the desired username and password.

We need to modify the script to specify the user and password we created.

Edit your app/vendors/shells/consume.php shell script and add the following two
properties to the ConsumeShell class:

protected static $user;
protected static $password;

Creating and Consuming Web Services

210

While still editing the script, make the following changes to the main() method:

public function main() {
 if (empty($this->args) || count($this->args) != 3) {

 $this->err('USAGE: cake consume <baseUrl> <user> <password>');

 $this->_stop();

 }

 list(self::$baseUrl, self::$user, self::$password) = $this->args;

 $this->test();
}

Make the following changes to the request() method:

protected function request($url, $method='GET', $data=null) {
 if (!isset(self::$httpSocket)) {
 self::$httpSocket = new HttpSocket();
 } else {
 self::$httpSocket->reset();
 }

 $body = self::$httpSocket->request(array(
 'method' => $method,
 'uri' => self::$baseUrl . '/' . $url,
 'body' => $data,
 'auth' => array(

 'user' => self::$user,

 'pass' => self::$password

)

));

 if ($body === false || self::$httpSocket->response['status']
['code'] != 200) {
 $error = 'ERROR while performing '.$method.' to '.$url;
 if ($body !== false) {
 $error = '[' . self::$httpSocket->response['status']
['code'] . '] ' . $error;
 }
 $this->err($error);
 $this->_stop();
 }

 return $body;
}

Chapter 7

211

We can now run the script specifying the username and password we created. Change
http://localhost to match your application's URL, user to match the username,
and password to match the created password:

ff If you are on a GNU Linux / Mac / Unix system:
../cake/console/cake consume http://localhost user password

ff If you are on Microsoft Windows:
..\cake\console\cake.bat consume http://localhost user password

Running the script should give the same successful output as shown in the recipe Building
REST services with JSON.

How it works...
We started by adding some special logic to the beforeFilter callback when being
requested through JSON. In it, we start by telling the Auth component that the action being
requested is public. If we didn't, the Auth component would render the login form to the
client, which is obviously not a valid JSON response.

This recipe uses a database-based authentication method. A simplier
approach could have been taken by implementing basic HTTP authentication,
a concept covered at http://book.cakephp.org/view/1309/
Basic-HTTP-Authentication.

Once we have established that the Auth component will not handle authorization for any
actions requested through JSON, we need to add support for HTTP Basic Authentication. We
do so by first configuring the loginOptions property of the Security component with the
following settings:

ff type: Type of HTTP Authentication to use, which can be either basic or digest.
We chose basic.

ff realm: A descriptive name of the system being accessed.

ff login: An optional function that is called when a client is trying to login through
HTTP authentication. As we will use the Auth component to validate a login, we
specify our own custom function, named _restLogin, to validate a user.

Once we configured Security, we use its requireLogin() method to mark the current
action as one that requires HTTP authentication.

Creating and Consuming Web Services

212

We also need to take into account a special check the Security component performs on
certain requests. When data is posted, the component will look for a special token that should
be saved in the session, and also posted as part of the request. This is a great feature that
prevents the manipulation of hidden fields, because the token contains a hash of all known
form values.

Naturally, this is something that should not be applicable for REST requests because as we
learnt while describing the REST architecture in the introduction to the recipe Building REST
services with JSON, REST requests are stateless. Therefore, we disable this feature by setting
the validatePost property of the Security component to false.

The final step is implementing the method that is called by the Security component
whenever an HTTP authentication login is attempted. We named this method _restLogin(),
prefixing it with an underscore to prevent direct access to it. This method takes only one
parameter, an indexed array with two mandatory keys: username, and password.

As the Auth component can be configured to use any field names for the username and
password fields, we need to make sure we use the configured field names prior to attempting
the login. The fields property of the Auth component contains this configuration in an array,
indexed by username, and password.

When we receive a call to _restLogin(), the value for the password field is plain text, as
this is the standard way HTTP Basic Authentication works. However, the Auth component
only takes hashes as passwords, so we need to hash the given password by utilizing the
password() method of the Auth component.

Once the correct field names are utilized, and the password is hashed, we are ready to
attempt the login. We call the login() method of the Auth component, which returns true
if the login is successful, or false otherwise. If the login fails, we use the blackHole()
method of the Security component, specifying the reason for failure (login, which
translates to a 401 HTTP status code), which stops the client request.

Implementing token-based authorization
for API access

In the previous recipe, Adding authentication to REST services, we built a REST API using
JSON for our PostsController actions. With it, clients that utilize our REST services use
a user account to validate their requests.

Without neglecting the need to authorize all requests, several companies take a different
approach when publishing their APIs: the use of API tokens. The advantage of using API
tokens is that our user accounts are not exposed in client scripts, so the authorization
information can't be used to log in to the site.

Chapter 7

213

In this recipe we will take our authenticated REST service system and enable the use of
tokens to use the exposed API. We will also add a usage limit, so client API usage is only
allowed within a certain time and number of uses threshold.

Getting ready
To go through this recipe, we need some JSON-based REST services implemented with
authentication in place, so follow the previous recipe.

How to do it...
1.	 We start by adding some fields to our users table. Issue the following SQL

statements:
ALTER TABLE `users`users
 ADD COLUMN `token` CHAR(40) default NULL,
 ADD COLUMN `token_used` DATETIME default NULL,
 ADD COLUMN `token_uses` INT NOT NULL default 0,
 ADD UNIQUE KEY `token`(`token`);

2.	 Edit your app/controllers/users_controller.php file and add the following
method to the UsersController class:
public function token() {
 $token = sha1(String::uuid());
 $this->User->id = $this->Auth->user('id');
 if (!$this->User->saveField('token', $token)) {
 $token = null;
 $this->Session->setFlash('There was an error generating this
token');
 }
 $this->set(compact('token'));
}

3.	 Create its view in a file named token.ctp and place it in your app/views/users
folder, with the following contents:
<h1>API access token</h1>
<?php if (!empty($token)) { ?>
 <p>Your new API access token is: <?php echo $token;
?></p>
<?php } ?>

Creating and Consuming Web Services

214

4.	 Let us add the parameters that will define the API access limits. Edit your app/
config/bootstrap.php file and add the following at the end:
Configure::write('API', array(
 'maximum' => 6,
 'time' => '2 minutes'
));

5.	 Edit your app/controllers/posts_controller.php file and change the
_restLogin() method, replacing it with the following contents:
public function _restLogin($credentials) {
 $model = $this->Auth->getModel();
 try {
 $id = $model->useToken($credentials['username']);
 if (empty($id)) {
 $this->redirect(null, 503);
 }
 } catch(Exception $e) {
 $id = null;
 }
 if (empty($id) || !$this->Auth->login(strval($id))) {
 $this->Security->blackhole($this, 'login');
 }
}

6.	 Create the User model in a file named user.php and place it in your app/models
folder, with the following contents:
<?php
class User extends AppModel {
 public function useToken($token) {
 $user = $this->find('first', array(
 'conditions' => array($this->alias.'.token' => $token),
 'recursive' => -1
));
 if (empty($user)) {
 throw new Exception('Token is not valid');
 }

 $apiSettings = Configure::read('API');
 $tokenUsed = !empty($user[$this->alias]['token_used']) ?
$user[$this->alias]['token_used'] : null;
 $tokenUses = $user[$this->alias]['token_uses'];
 if (!empty($tokenUsed)) {
 $tokenTimeThreshold = strtotime('+' .
$apiSettings['time'], strtotime($tokenUsed));

Chapter 7

215

 }

 $now = time();
 if (!empty($tokenUsed) && $now <= $tokenTimeThreshold &&
$tokenUses >= $apiSettings['maximum']) {
 return false;
 }

 $id = $user[$this->alias][$this->primaryKey];
 if (!empty($tokenUsed) && $now <= $tokenTimeThreshold) {
 $this->id = $id;
 $this->saveField('token_uses', $tokenUses + 1);
 } else {
 $this->id = $id;
 $this->save(
 array('token_used'=>date('Y-m-d H:i:s'), 'token_
uses'=>1),
 false,
 array('token_used', 'token_uses')
);
 }
 return $id;
 }
}
?>

7.	 Edit your app/vendors/shells/consume.php test script, remove the $user and
$password properties, and then add the following property:
protected $token;

8.	 While still editing the shell script, make the following changes to its main() method:
public function main() {
 if (empty($this->args) || count($this->args) != 2) {
 $this->err('USAGE: cake consume <baseUrl> <token>');
 $this->_stop();
 }

 list(self::$baseUrl, self::$token) = $this->args;

 $this->test();
}

9.	 Finally, make the following changes to the request() method:
protected function request($url, $method='GET', $data=null) {
 if (!isset(self::$httpSocket)) {
 self::$httpSocket = new HttpSocket();
 } else {

Creating and Consuming Web Services

216

 self::$httpSocket->reset();
 }

 $body = self::$httpSocket->request(array(
 'method' => $method,
 'uri' => self::$baseUrl . '/' . $url,
 'body' => $data,
 'auth' => array(
 'user' => self::$token,
 'pass' => ''
)
));

 if ($body === false || self::$httpSocket->response['status']
['code'] != 200) {
 $error = 'ERROR while performing '.$method.' to '.$url;
 if ($body !== false) {
 $error = '[' . self::$httpSocket->response['status']
['code'] . '] ' . $error;
 }
 $this->err($error);
 $this->_stop();
 }

 return $body;
}

If you now browse to http://localhost/users/token, you will be asked to Log in. Log in
with the user account you created during the Getting Started section and you will then obtain
an API token.

Let us now run the testing script with the following command. Change http://localhost
to match your application's URL, and token to match the API token you just generated:

ff If you are on a GNU Linux / Mac / Unix system:
../cake/console/cake consume http://localhost token

ff If you are on Microsoft Windows:
..\cake\console\cake.bat consume http://localhost token

If we specified the right token, we will get the same successful output as shown in the recipe
Building REST services with JSON.

If you run the script again within 2 minutes since the last run, you will get a 503 (Service
Unavailable) HTTP status error, indicating that we are overusing our API token. We will have
to wait two minutes to be able to successfully run the script again, because each run makes
six requests to the API, and six is the maximum allowed requests within two minutes, as
configured in app/config/bootstrap.php.

Chapter 7

217

How it works...
We start by adding three fields to the users table:

ff token: The API access token, unique to each user. This is what a user will use
to use our API services.

ff token_used: The last time the API usage counter (token_uses) was reset.

ff token_uses: The number of API uses since the date and time specified in
token_used.

We then create an action called token in the UsersController class to allow users to
get new API access tokens. This action will simply create a new token by hashing a UUID
(Universally Unique Identifier), and saving it to the users table record.

We proceed to set our application configuration in bootstrap.php by defining the API
access limits with two settings:

ff maximum: The maximum number of API requests allowed within a given time frame.

ff time: The time frame that is used to check for API overuse. Any string that can be
used by the PHP function strtotime() is allowed.

We set time to 2 minutes, and maximum to 6 requests, which means that we will allow up to
six API requests per user, every two minutes.

As we are no longer using real accounts to authenticate our API users, we changed the
_restLogin() method in ProfilesController to only use the given username field
value. This value is in fact a user's API token. The password field is therefore ignored,
which allows our test client script to simply pass an empty value as the password.

We use the method useToken() of the User model to check the validity of the token. If the
method throws an Exception, then the given token does not exist, so we end the request
with a 401 status (Unauthorized) by calling the blackhole() method of the Security
component. If the useToken() method returns false, then the token is being overused,
so we send back a 503 (Service Unavailable) status. If we are given back a valid user ID, we
convert this value to a string, and pass it to the login() method of the Auth component,
which will log in a user with a given ID if the specified parameter is a string.

As we can see, the whole token usage logic relies on the User::useToken(). This method
starts by looking for a user record with the given token. If none is found, it throws an
Exception. If a valid token is being used, it checks to see if the token has been used. If so,
we set the time limit since the first update of the token usage in the $tokenTimeThreshold
local variable. If we are within this time frame, and if the number of token uses exceeds the
configured setting, we return false.

If none of the above conditions are met, then the token use is valid, so we either increment
the number of uses if $tokenTimeThreshold is within the current time frame, or reset it.

8
Working with Shells

In this chapter, we will cover:

ff Building and running a shell

ff Parsing command line parameters

ff Creating reusable shell tasks

ff Sending e-mails from shells

ff Creating Non-interactive tasks with the robot plugin

Introduction
One of the most powerful, yet unknown, features of CakePHP is its shell framework. It provides
applications with all that is required for building command-line tools, which can be used to
perform intensive tasks and any other type of non-interactive processing.

This chapter introduces the reader to CakePHP shells by starting with the process of building
basic shells, and then moving on to more advanced features, such as sending e-mails and
running controller actions from shells. It finishes by presenting the robot plugin, which offers a
fully featured solution for scheduling and running tasks.

Building and running a shell
In this recipe, we will learn how to build and run a custom shell, which will ask for a username
and a password, and add the given account to a list of user accounts. Based on the system
created in the recipe Setting up a basic authentication system from Chapter, Authentication,
this shell is a great help when looking to create test accounts.

Working with Shells

220

Getting ready
To go through this recipe we need an authentication system. Follow the entire recipe Setting
up a basic authentication system from Authentication chapter.

How to do it...
Create a file named user.php and place it in your app/vendors/shells folder, with
the following contents:

<?php
App::import('Core', 'Security');

class UserShell extends Shell {
 public $uses = array('User');
 public function main() {
 $user = $this->in('Enter the username (ENTER to abort):');
 if (empty($user)) {
 $this->_stop();
 }

 $defaultPassword = $this->_randomPassword();;
 $password = $this->in('Enter the password (ENTER to use
generated):', null, $defaultPassword);

 $this->out();
 $this->out('USER: '.$user);
 $this->out('PASSWORD: '.$password);
 $this->out();

 if (strtoupper($this->in('Proceed?', array('Y', 'N'), 'N')) !=
'Y') {
 $this->_stop();
 }

 $user = array('User' => array(
 'username' => $user,
 'password' => Security::hash($password, null, true)
));

 $this->User->create();
 if ($this->User->save($user)) {
 $this->out('User created.');
 } else {
 $this->error('Error while creating user.');
 }
 }

 protected function _randomPassword($size=10) {

Chapter 8

221

 $chars = '@!#$_';
 foreach(array('A'=>'Z', 'a'=>'z', '0'=>'9') as $start => $end) {
 for ($i=ord($start), $limiti=ord($end); $i <= $limiti; $i++)
{
 $chars .= chr($i);
 }
 }

 $totalChars = strlen($chars);
 $password = '';
 for($i=0; $i < $size; $i++) {
 $password .= $chars[rand(0, $totalChars-1)];
 }
 return $password;
 }
}
?>

We are now ready to run our shell. Open a terminal window, and access the directory where
your application resides. Inside this directory you should have your app/ and cake/ folders.
For example, if your application is installed in /var/www/myapp, then /var/www/myapp/
app should be your app/ folder, and /var/www/myapp/cake your cake/ folder. While
standing in your application's main directory (/var/www/myapp in this example), run:

To learn more about setting the right path when running shells,
or how to add the cake shell script to your PATH environment
variable see http://book.cakephp.org/view/1106/
The-CakePHP-Console

If you are on a GNU Linux / Mac / Unix system:

../cake/console/cake user

If you are on Microsoft Windows:

..\cake\console\cake.bat user

If you receive an error message such as Error: Class UserShell could not be
loaded, this means that CakePHP is unable to find your app/ folder, which
is probably because you have a different name for the app/ folder. In this
case, you can specify the folder with the app argument, like so: $ cake/
console/cake -app /var/www/myapp/app user.

Working with Shells

222

Once the shell is run, it will ask us for the desired username and password, and will wait
for a final confirmation before creating the account, as shown in the following screenshot:

We are now able to use this account when logging in through our application's login page.

How it works...
We started by importing the Security class, which is used for hashing the password prior
to saving the user record. We then created a class named UserShell, extending it from
CakePHP's Shell class, which offers us a set of methods and properties that are helpful
when building shells. One of such properties is uses, which works the same way as a
controller's uses property—by defining a list of application models that should be instantiated
and ready to use from any method in the shell.

Our shell's entry point is the main() method. This comes as no surprise if you have any
experience developing C, C++, or Java applications, as main() is also their entry function.
If you have no such experience, then all there is to know is that main() will be automatically
executed by CakePHP when our shell is invoked through the command line.

Our main() method starts by asking the user for their desired username. To ask for user
input, we use the in() method (available through the Shell parent class), which takes
up to three arguments:

ff prompt: The message that is shown to the user before asking for their input.

ff options: An optional set of values that the user should be restricted to when
entering their input.

Chapter 8

223

ff default: An optional default value that is to be used if the user enters no input
by clicking Enter at the prompt.

If the user does not specify a user name, we exit the application by calling the _stop()
method, available to all CakePHP classes that descend from Object, Shell being one
of them.

Once we have our username, we need to ask for a password. As a useful alternative, we
want to offer the user an automatically generated password. To generate this password,
we implement a method called, not surprisingly, _randomPassword().

This method takes one argument, the size of the generated password, and builds it by
randomly selecting an element from a defined set of characters. This set is constructed by
including all characters between the letters A and Z, a and Z, and 0 and 9. For more secure
passwords, we also included the symbols @ ! # $ and _ as valid characters.

When we use the in() method to ask the user for a password, we use this default generated
password as its third argument (default.) After asking for the password, we show the user
the choice for username and password, and ask for confirmation, utilizing the options
argument in our call to in().

If the user confirms the operation, we proceed to create the user record, hashing the entered
password with the Security::hash() method, which takes up to three arguments:

ff string: The string to be hashed.

ff method: The method to use for hashing, which can be any of: sha1, sha256, md5, or
any other method supported by the hash() PHP function. Defaults to the following
PHP functions, depending on their availability: sha1() (also used if sha1 is the
chosen method), mhash() (also used if sha256 is the chosen method), hash(),
and finally md5().

ff salt: If true, prefixes the string with the application's salt (available in the
Configure setting Security.salt). If a string is specified, it is prefixed to the
password being hashed in place of the application's Security.salt setting. If
false, hashes the given string without a prefix.

If a record is created, we inform the user that the operation succeeded. Otherwise we use the
error() method (available through the Shell parent class) which sends an error message
through the standard error stream and exits the application.

Using the Auth component for hashing passwords
In this recipe, we called the Security::hash() method to hash passwords, by specifying
the same exact arguments that are utilized in the Auth component. If we did not do so, we
would have different hash values for the same passwords, which would render our shell
useless, as any user account created with it wouldn't be able to log in.

Working with Shells

224

The problem with this approach is that if the method that is used by the Auth component to
hash passwords is changed, we would need to reflect such changes in our shell. Therefore, we
may want to use the Auth component to do the hashing instead. This solution requires a bit
of extra effort, as components are not natively available in a shell. Edit your app/vendors/
shells/user.php file and remove the import of the Security class, and then add the
following import statement at the beginning of the file:

App::import('Component', 'Auth');

We now need to instantiate the AuthComponent class. Add the following code to the
beginning of the main() method:

$this->Auth = new AuthComponent();

Finally change the definition of the data that is used for creating the User record, so its
password field is hashed using the Auth component:

$user = array('User' => array(
 'username' => $user,
 'password' => $this->Auth->password($password)

));

See also
ff Parsing command line parameters

Parsing command line parameters
The recipe Building and running a shell showed us how to create a shell that adds records
based on user-provided information. This recipe adds support to import accounts from a CSV
file, while allowing the user to configure different settings through the use of command-line
parameters.

Getting ready
To go through this recipe we need the user shell implemented. Follow the entire recipe
Building and running a shell.

We will also need a sample CSV file from which to import records. Create a file named users.
csv and place it in a directory of your choice (for example, in the application's app/tmp
directory) with the following contents:

"john","John","Doe"
"jane","Jane","Doe"
"mark","Mark","Doe"

Chapter 8

225

"mathew","Mathew","Doe"
"peter","Peter","Doe"
"roland","Roland","Doe"

How to do it...
1.	 Edit your app/vendors/shells/user.php file, and change the name of the

method main() to add().

2.	 Add the following method right below the add() method:
public function help() {
 $this->out('USAGE: $ cake '.$this->shell.' <import <path/to/
file> [-limit N | -size N | -verbose] | add>');
 $this->out('where:');
 $this->out();
 $this->out('-limit N: import up to N records');
 $this->out('-size N: size of generated password');
 $this->out('-verbose: Verbose output');
}

3.	 Now add the following method above the _randomPassword() method:
protected function _parseCSV($path) {
 $file = fopen($path, 'r');
 if (!is_resource($file)) {
 $this->error('Can\'t open '.$file);
 }

 $rows = array();
 while($row = fgetcsv($file)) {
 $rows[] = $row;
 }

 fclose($file);
 return $rows;
}

4.	 Finally, add the following below the help() method:
public function import() {
 $this->_checkArgs(1);

 $defaults = array(
 'limit' => null,
 'size' => 10,
 'verbose' => false
);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Shells

226

 $options = array_merge(
 $defaults,
 array_intersect_key($this->params, $defaults)
);

 $path = $this->args[0];
 if (!is_file($path) || !is_readable($path)) {
 $this->error('File '.$path.' cannot be read');
 }

 $users = array();
 foreach($this->_parseCSV($path) as $i => $row) {
 $users[$row[0]] = $this->_randomPassword($options['size']);
 if (!empty($options['limit']) && $i + 1 == $options['limit']) {
 break;
 }
 }

 if ($options['verbose']) {
 $this->out('Will create '.number_format(count($users)).'
accounts');
 }

 foreach($users as $userName => $password) {
 if ($options['verbose']) {
 $this->out('Creating user '.$userName.'... ', false);
 }

 $user = array('User' => array(
 'username' => $userName,
 'password' => Security::hash($password, null, true)
));

 $this->User->create();
 $saved = ($this->User->save($user) !== false);
 if (!$saved) {
 unset($users[$userName]);
 }

 if ($options['verbose']) {
 $this->out($saved ? 'SUCCESS' : 'FAIL');
 }
 }

 $this->out('Created accounts:');
 foreach($users as $userName => $password) {
 $this->out($userName.' : '.$password);
 }
}

Chapter 8

227

If we run the shell without arguments, CakePHP will say that there is no known command, and
suggest that we get help by specifying help as an argument to our shell. Doing so will display
our help message, as shown in the following screenshot:

If we run our shell with the add argument, we will see exactly the same functionality
implemented in the recipe Building and running a shell.

Executing the shell with the import argument and the verbose parameter, and specifying
the path to our CSV file with a command such as the following:

$ cake/console/cake user import app/tmp/users.csv -verbose

would import the users listed in the CSV file, generating an output similar to what is shown
in the following screenshot:

Working with Shells

228

How it works...
We started by changing the name of the entry method to add(). Doing so means we no
longer have an entry method, so how does CakePHP find what to run when our shell is
invoked? Through the use of commands.

If there is no entry method defined in a shell, CakePHP will assume that the first argument used
when executing a shell is a command. A command is nothing more than a public method that
does not start with an underscore sign. As such, a method named add() is executed when the
shell is invoked with the add argument. If no argument is specified, CakePHP complains, as
there is no command to run, and suggests the user use the help argument, which is nothing
more than a way to call the help() method in our shell (as help is a regular command).

We use the help() method to show usage instructions for our shell, listing the available
commands (add, and import), and the parameters for each of those commands. While the
add command has no available parameters, we support the following parameters for our
import command:

Setting Purpose
limit A maximum number of records to process from the CSV file. If omitted, all

records will be processed.
size The maximum length for the generated passwords. Defaults to 10.
verbose If specified, the shell will output information as its creating the user records.

The _parseCSV() method is our helper method to parse a CSV file, returning an array of
rows found in a file, where each row is itself an array of values. This method uses PHP's
fgetcsv() function to parse a record from a file handle, obtained with the use of PHP's
fopen() function, and closed with fclose() once the parsing is finished.

We continue by implementing the import() method, the body of our import command. This
method uses the _checkArgs() method (available through the Shell class) to make sure
that the command receives at least the specified number of arguments, in our case 1. If the
method finds that the user did not specify the minimum number of arguments, it will throw an
error message and abort the execution. This is a way for us to make sure that at least the path
to the CSV file is provided.

If the number of arguments is correct we proceed to process the optional parameters. To
do so, we use the params property. This property is available to all shells, and includes the
following values even when no parameters are provided:

Chapter 8

229

Setting Purpose
app The name of the app/ directory.
root The full path to our application's root directory, which would contain the app/ and

cake/ directories.
webroot The name of the webroot/ directory, which is inside the app/ directory.
working The full path to the app/ directory.

However, we are only interested in the parameters given by the user through the command
line. Therefore, we define the set of valid parameters with their default values, and we merge
the values for those parameters that are available in the params property. We store this
merged values in an array named options.

Using the is_file() and is_readable() PHP functions, we make sure we were given
a valid file. If not, we use the error() method to print out an error message and abort
the application.

We then proceed to use _importCSV() to get a list of parsed rows, and for each of those
rows we assign a random password, using the size option. We stop generating passwords
once we reach the value of the limit option, if one is provided. By the end of this loop, we
will have an array named users where its index is a username, and its value is the password
for the given user.

For each of the values in the users array, we create the account record similar to the way we
do it in the add command, while outputting the status of each creation if the verbose option
is set. If we get an error while creating a specific record, we remove the problematic user from
the users array.

Once the creation process is finalized, we output the list of successfully created usernames,
together with their generated passwords.

See also

ff Parsing CSV files with a datasource in Chapter 5, Datasources

ff Creating reusable shell tasks

Creating reusable shell tasks
Just as we have components to share functionality amongst controllers, we also have
behaviors for models, and helpers for views. What about shells? CakePHP offers the concept
of tasks, which are classes that also extend from the Shell class, but can be reused from
other shells.

Working with Shells

230

In this recipe, we will learn how to build a task that handles argument and parameter
processing for our shell, can auto-generate help messages, and check the definition of
mandatory arguments and optional parameters. We will implement this task in the most
generic fashion, so we can use it for any future shells we may decide to build.

Getting ready
To go through this recipe we need a shell that accepts parameters and has different
commands available. Follow the entire recipe Parsing command line parameters.

How to do it...
1.	 Edit your app/vendors/shells/user.php file and add the following right below

the declaration of the uses property:
public $tasks = array('Help');
public static $commands = array(
 'add',
 'import' => array(
 'help' => 'Import user records from a CSV file',
 'args' => array(
 'path' => array(
 'help' => 'Path to CSV file',
 'mandatory' => true
)
),
 'params' => array(
 'limit' => array(
 'type' => 'int',
 'help' => 'import up to N records'
),
 'size' => array(
 'value' => 10,
 'type' => 'int',
 'help' => 'size of generated password'
),
 'verbose' => array(
 'value' => false,
 'type' => 'bool',
 'help' => 'Verbose output'
)
)
)
);

Chapter 8

231

2.	 While still editing the shell, remove the help() method, and remove the following
lines from the beginning of the import() method:
$this->_checkArgs(1);

$defaults = array(
 'limit' => null,
 'size' => 10,
 'verbose' => false
);
$options = array_merge(
 $defaults,
 array_intersect_key($this->params, $defaults)
);

$path = $this->args[0];

3.	 Add the following lines at the beginning of the import() method:
$options = $this->Help->parameters;
extract($this->Help->arguments);

4.	 Create a file named help.php and place it in your app/vendors/shells/tasks,
with the following contents:
<?php
class HelpTask extends Shell {
 public $parameters = array();
 public $arguments = array();
 protected $commands = array();

 public function initialize() {
 $shellClass = Inflector::camelize($this->shell).'Shell';
 $vars = get_class_vars($shellClass);

 if (!empty($vars['commands'])) {
 foreach($vars['commands'] as $command => $settings) {
 if (is_numeric($command)) {
 $command = $settings;
 $settings = array();
 }
 if (!empty($settings['args'])) {
 $args = array();
 foreach($settings['args'] as $argName => $arg) {
 if (is_numeric($argName)) {
 $argName = $arg;
 $arg = array();
 }
 $args[$argName] = array_merge(array(

Working with Shells

232

 'help' => null,
 'mandatory' => false
), $arg);
 }
 $settings['args'] = $args;
 }

 if (!empty($settings['params'])) {
 $params = array();
 foreach($settings['params'] as $paramName =>
$param) {
 if (is_numeric($paramName)) {
 $paramName = $param;
 $param = array();
 }
 $params[$paramName] = array_merge(array(
 'help' => null,
 'type' => 'string'
), $param);
 }
 }

 $this->commands[$command] = array_merge(array(
 'help' => null,
 'args' => array(),
 'params' => array()
), $settings);
 }
 }

 if (empty($this->command) && !in_array('main', get_class_
methods($shellClass))) {
 $this->_welcome();
 $this->_help();
 } elseif (!empty($this->command) && array_key_exists($this-
>command, $this->commands)) {
 $command = $this->commands[$this->command];

 $number = count(array_filter(Set::extract(array_
values($command['args']), '/mandatory')));
 if ($number > 0 && (count($this->args) - 1) < $number) {
 $this->err('WRONG number of parameters');
 $this->out();
 $this->_help($this->command);
 } elseif ($number > 0) {
 $i = 0;
 foreach($command['args'] as $argName => $arg) {

Chapter 8

233

 if ($number >= $i && isset($this->args[$i+1])) {
 $this->arguments[$argName] = $this->args[$i+1];
 }
 $i++;
 }
 }

 $values = array_intersect_key($this->params,
$command['params']);
 foreach($command['params'] as $settingName => $setting) {
 if (!array_key_exists($settingName, $values)) {
 $this->parameters[$settingName] = array_key_
exists('value', $setting) ?
 $setting['value'] :
 null;
 } elseif ($setting['type'] == 'int' && !is_
numeric($values[$settingName])) {
 $this->err('ERROR: wrong value for '.$settingName);
 $this->out();
 $this->_help($this->command);
 } else {
 if ($setting['type'] == 'bool') {
 $values[$settingName] =
!empty($values[$settingName]);
 }

 $this->parameters[$settingName] =
$values[$settingName];
 }
 }
 }
 }
}

5.	 Add the following methods to the created HelpTask class:
 public function execute() {
 $this->_help(!empty($this->args) ? $this->args[0] : null);
}

protected function _help($command = null) {
 $usage = 'cake '.$this->shell;
 if (empty($this->commands)) {
 $this->out($usage);
 return;
 }

 $lines = array();
 $usages = array();

Working with Shells

234

 if (empty($command) || !array_key_exists($command, $this-
>commands)) {
 foreach(array_keys($this->commands) as $currentCommand) {
 $usages[] = $this->_usageCommand($currentCommand);
 if (!empty($lines)) {
 $lines[] = null;
 }
 $lines = array_merge($lines, $this->_
helpCommand($currentCommand));
 }
 } else {
 $usages = (array) $this->_usageCommand($command);
 $lines = $this->_helpCommand($command);
 }

 if (!empty($usages)) {
 $usage .= ' ';

 if (empty($command)) {
 $usage .= '<';
 }

 $usage .= implode(' | ', $usages);

 if (empty($command)) {
 $usage .= '>';
 }
 }

 $this->out($usage);
 if (!empty($lines)) {
 $this->out();
 foreach($lines as $line) {
 $this->out($line);
 }
 }

 $this->_stop();
}

6.	 While still editing the HelpTask class, add the following helper methods to the class:
protected function _usageCommand($command) {
 $usage = $command;
 if (!empty($this->commands[$command]['args'])) {
 foreach($this->commands[$command]['args'] as $argName =>
$arg) {
 $usage .= ' ' . ($arg['mandatory'] ? '<' : '[');
 $usage .= $argName;
 $usage .= ($arg['mandatory'] ? '>' : ']');

Chapter 8

235

 }
 }
 if (!empty($this->commands[$command]['params'])) {
 $usages = array();
 foreach(array_keys($this->commands[$command]['params']) as
$setting) {
 $usages[] = $this->_helpSetting($command, $setting);
 }
 $usage .= ' ['.implode(' | ', $usages).']';
 }
 return $usage;
}

protected function _helpCommand($command) {
 if (
 empty($this->commands[$command]['args']) &&
 empty($this->commands[$command]['params'])
) {
 return array();
 }

 $lines = array('Options for '.$command.':');

 foreach($this->commands[$command]['args'] as $argName => $arg)
{
 $lines[] = "\t".$argName . (!empty($arg['help']) ?
"\t\t".$arg['help'] : '');
 }

 foreach(array_keys($this->commands[$command]['params']) as
$setting) {
 $lines[] = "\t".$this->_helpSetting($command, $setting,
true);
 }

 return $lines;
}

protected function _helpSetting($command, $settingName, $useHelp =
false) {
 $types = array('int' => 'N', 'string' => 'S', 'bool' => null);
 $setting = $this->commands[$command]['params'][$settingName];
 $type = array_key_exists($setting['type'], $types) ?
$types[$setting['type']] : null;

 $help = '-'.$settingName . (!empty($type) ? ' '.$type : '');
 if ($useHelp && !empty($setting['help'])) {
 $help .= "\t\t".$setting['help'];

 if (array_key_exists('value', $setting) && !is_
null($setting['value'])) {

Working with Shells

236

 $help .= '. DEFAULTS TO: ';
 if (empty($type)) {
 $help .= $setting['value'] ? 'Enabled' : 'Disabled';
 } else {
 $help .= $setting['value'];
 }
 }
 }
 return $help;
}

If you now run the shell without any parameters, with a command such as the following:

$ cake/console/cake user

we would get the thorough help message shown in the following screenshot:

We can also obtain detailed help for a specific command. Running the shell with a command
such as the following:

$ cake/console/cake user help import

would show us the help message for the import command, as shown in the following
screenshot:

Chapter 8

237

Running the shell with the same parameters as the ones used in the recipe Parsing command
line parameters to import CSV files should work as expected.

How it works...
When a shell includes the property tasks in its declaration, it is said to use the specified
tasks. Tasks are stored in the app/vendors/shells/tasks folder, and are accessible in
the shell as instances. In our case, we add a task named Help, which should be implemented
in a class named HelpTask and placed in a file named help.php in the tasks folder, and
we refer to it as $this->Help from within the shell.

Before proceeding, a point has to be made regarding the naming of this particular task. As
we want our task to automatically generate help messages for our shell, we somehow need to
catch the call to the help() command. This is only achievable if we first understand how the
shell dispatching process works. Let us assume the following invocation:

$ cake/console/cake user import

The shell dispatcher, implemented in the file cake/console/cake.php, would go through
the following steps:

1.	 Instantiate the shell class UserShell.

2.	 Call its initialize() method.

3.	 Load all tasks defined in the tasks property of the shell.

Working with Shells

238

4.	 For each of those tasks, call their initialize() method, and load any tasks that
they themselves may be using.

If the given command (import in this case) is the name of one of the included tasks, call the
task's startup() method, and then its execute() method.

If the given command is not a task name, then call the shell's startup() method, and
execute the command's method, if it exists, or the entry method main() if the command is
not implemented.

This means that if we have a task named Help included in our shell, and the user launches
the shell with the following command:

$ cake/console/cake user help

Then the shell dispatcher would call the execute() method of the HelpTask class, because
the command, help, is actually the name of one of the shell's tasks. Knowing this, we can
remove the help() implementation of our User shell, and have the Help task handle the
display of help messages.

Furthermore, our Help task needs to be generic enough to not be tied to a specific shell.
Therefore, we need a way to tell it about our available commands, expected arguments, and
optional parameters. This is what the commands property is there for: an array of commands,
where the key is the command name and the value any of the following settings:

Setting Purpose
help The help message describing the purpose of the command. Defaults to no

message.
args The list of mandatory and optional arguments the command takes. Defaults to no

arguments.
params The list of optional parameters the command accepts. Defaults to no parameters.

Notice, however, that the add command is defined in a different fashion: instead of being
defined in the key, it is simply the name of the command added to the commands array.
This means that the command has no help message, no arguments, and no parameters.

The args command setting is an array of arguments, indexed by argument name. Each
argument may define any of the following settings:

Setting Purpose
help The help message that describes the argument. Defaults to no message.
mandatory If true, this argument must be present. If false, the argument may be

omitted. Defaults to false.

Chapter 8

239

Similarly, the params command setting is also an array, indexed by parameter name, where
each parameter may define any of the following settings:

Setting Purpose
help The help message that describes the parameter. Defaults to no message.
type The type of data this parameter holds. May be int, bool, or string. Any other

type is interpreted as string. Defaults to string.
value A default value to use if the parameter is not specified. Defaults to no default value.

Using the commands property in the UserShell class, we define the set of available
arguments and parameters for our import command, and we then modify the import()
method so that the options are obtained from the parameters property of the Help task.
We also use the extract() PHP function to convert any arguments that are defined in the
arguments property of the Help task to local variables. This way, the path argument will be
available to the method as the variable $path.

These were all the modifications required in the UserShell class. Notice how we not only
removed the help() method implementation, but also the processing of parameters, and
the check for the right number of arguments from the import() method. This is all done
automatically by the Help task now, based on what we define in our commands property.

This means that our Help task is indeed the Swiss Army knife of our shells, with most of its work
being done in its initialize() method. This method starts by utilizing the PHP method, get_
class_vars(), to obtain the commands property defined in the shell, because our task has no
way of getting a hold of the instance of the UserShell class. It then proceeds to go through the
list of commands, and normalizes all arguments and parameters thereby defined, assigning the
resulting array to the commands property of the HelpTask class.

Once we have all our commands ready to be checked, we establish if the user has indeed
selected a command to be executed through the command property, available to all classes
that extend from Shell, and set to the current command. If the user has not, and if there is no
main() method implemented in the shell, we use the _help() method to display the help.

If users have indeed specified a command that is within the list of available commands,
we make sure that the specified arguments match the minimum number of mandatory
arguments, if any, aborting the execution with a proper error message if the check fails.
If the number of arguments is correct, we store the value of each given argument in the
arguments property of the task.

Once the arguments are processed, we proceed to deal with the parameters. Going through
the specified parameters, we check their provided value against the data type, if any, aborting
the shell with a proper error message if the value given is of an incorrect type. If no value is
given, the default value is used, if any. The resulting array of parameters and values is stored
in the parameters property of the task.

Working with Shells

240

The execute() method is the one called whenever the Help task is invoked, which is
whenever the help command is used when calling the shell. Therefore, this method will
simply display the help message by calling the _help() method, optionally passing to it the
first argument, which would provide the user with the help message for the given command.

The _help() method builds the help message, for the entire shell or a specific
command. It uses the command information stored in the commands property, and
calls the _usageCommand() helper method to get the usage message for a given
command, and the _helpCommand() method to get the help message for all available
parameters and arguments in the command.

Sending e-mails from shells
E-mail sending is not a task that requires any interaction by visitors to our web applications,
so it is pointless to make them wait for their delivery, which is exactly what we would do if we
were to send an e-mail from a controller's action.

Deferring e-mail sending to a shell makes real sense both from a performance perspective
and from the administrator point of view, as we may also add the ability to re-send failed
e-mails.

This recipe uses the Email component provided by CakePHP to send a fictitious newsletter,
adding the ability to test the sending process through a shell parameter.

Getting ready
To go through this recipe we need some data to work with. Create a subscribers table with
the following SQL statement:

CREATE TABLE `subscribers`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 `email` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

Create a newsletters table with the following statement:

CREATE TABLE `newsletters`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `title` VARCHAR(255) NOT NULL,
 `body` TEXT NOT NULL,
 `sent` TINYINT(1) UNSIGNED NOT NULL default 0,
 PRIMARY KEY(`id`)
);

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 8

241

Create a newsletters_subscribers table with the following statement:

CREATE TABLE `newsletters_subscribers`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `newsletter_id` INT UNSIGNED NOT NULL,
 `subscriber_id` INT UNSIGNED NOT NULL,
 `sent` TINYINT(1) UNSIGNED NOT NULL default 0,
 PRIMARY KEY(`id`)
);

Now add some sample data to these tables with the following statements:

INSERT INTO `subscribers`(`name`, `email`) VALUES
 ('John Doe', 'john.doe@email.com'),
 ('Jane Doe', 'jane.doe@email.com');

INSERT INTO `newsletters`(`title`, `body`) VALUES
 ('My first newsletter', 'This is the body for my first
newsletter');

Create a file named newsletter.php and place it in your app/models folder, with the
following contents:

<?php
class Newsletter extends AppModel {
 public $hasMany = array('NewslettersSubscriber');
}
?>

How to do it...
Create a file named email.php and place it in your app/vendors/shells, with the
following contents:

<?php
App::import('Component', 'Email');
class EmailShell extends Shell {
 public $uses = array('Newsletter', 'Subscriber');

 public function startup() {

 $this->Email = new EmailComponent();
 $this->Email->delivery = 'smtp';
 $this->Email->smtpOptions = array(
 'host' => 'smtp.email.com',
 'username' => 'smtpUser',
 'password' => 'smtpPassword'
);

Working with Shells

242

 }

 public function main() {
 $email = !empty($this->params['to']) ? $this->params['to'] :
array();

 $newsletter = $this->Newsletter->find('first', array(
 'conditions' => array('sent' => false),
 'recursive' => -1
));
 if (empty($newsletter)) {
 $this->out('All newsletters have been sent');
 $this->_stop();
 }

 $this->out('Sending newsletter "'.$newsletter['Newsletter']
['title'].'"');

 $subscribers = $this->Subscriber->find('all');
 foreach($subscribers as $subscriber) {
 $this->out('Sending to '.$subscriber['Subscriber']
['email'].'... ', false);

 $currentEmail = !empty($email) ? $email :
$subscriber['Subscriber']['email'];

 if (!empty($email)) {
 $this->Email->headers['Destination'] =
$subscriber['Subscriber']['email'];
 }

 $this->Email->sendAs = 'html';
 $this->Email->subject = $newsletter['Newsletter']['title'];
 $this->Email->from = 'My Application <info@email.com>';
 $this->Email->to = $subscriber['Subscriber']['name'] . '
<'.$currentEmail.'>';

 $sent = $this->Email->send($newsletter['Newsletter']
['body']));
 if ($sent) {
 $this->out('DONE');
 } else {
 $error = !empty($this->Email->smtpError) ? $this->Email-
>smtpError : '';
 $this->out('ERROR' . (!empty($error) ? ': '.$error : ''));
 }

 $this->Newsletter->NewslettersSubscriber->create(array(
 'newsletter_id' => $newsletter['Newsletter']['id'],
 'subscriber_id' => $subscriber['Subscriber']['id'],
 'sent' => $sent

Chapter 8

243

));
 $this->Newsletter->NewslettersSubscriber->save();

 $this->Email->reset();
 }

 $this->Newsletter->id = $newsletter['Newsletter']['id'];
 $this->Newsletter->saveField('sent', true);
 }
}
?>

Make sure to change the following lines in the startup() function to match your settings:

$this->Email->delivery = 'smtp';
$this->Email->smtpOptions = array(
 'host' => 'smtp.email.com',
 'username' => 'smtpUser',
 'password' => 'smtpPassword'
);

If you wish to use PHP's mail() function instead of SMTP, change the delivery property
of the Email component to mail. Once configured, you can run the shell with the following
command to force all e-mails to go to your specific address (in this case, my@email.com):

$ cake/console/cake email -to my@email.com

As all e-mails are forced to be sent to my@email.com through the use of the shell parameter,
we need a way to tell if each e-mail will be going to the real e-mail address. Use your e-mail
program to view the headers of the e-mail, and you will notice the following header lines:

To: John Doe <my@email.com>
From: My Application <info@email.com>
Subject: My first newsletter
X-Mailer: CakePHP Email Component
X-Destination: john.doe@email.com

From these headers we can tell that the X-Destination header is set to the address to which
the e-mail was originally intended for.

How it works...
The EmailShell starts by implementing the startup() method, which is called before any
shell command or its entry method is executed. In this method, we create an instance of the
Email component. Once we have the instance, we configure its delivery settings through the
properties delivery and smtpOptions.

Working with Shells

244

The entry method main() checks to see if the to parameter is given. If so, this will be the
e-mail to which all e-mails will be sent to, a basic way to test the sending process. It continues
to fetch the first newsletter that has not yet been sent, and the list of subscribers that should
receive the newsletter.

For each of those subscribers, we set the appropriate properties of the Email component:

Property Purpose
sendAs Type of e-mail to send. Can be text, html, or both. We set it to html to

specify that we are sending an HTML-only e-mail.
subject The subject of the e-mail.
from The address sending the e-mail.
to The destination address. If the parameter is provided, this is the e-mail to

send to, otherwise we use the e-mail of the subscriber.

Finally, we proceed to send the actual e-mail through the component's send() method,
informing the user of the result of the operation, and resetting the e-mail contents with the
component's reset() method prior to the next loop in the for operation. We end the shell
by marking that the newsletter is sent.

See also

ff Sending an e-mail in Chapter 11, Utility Classes and Tools

Non-interactive tasks with the robot plugin
As our application grows in size and complexity, we will find ourselves in the need to create
and automate certain tasks, deferring the processing of non-interactive tasks for later
execution. While we can create shells to perform these operations, some of our needs may
be met by the Robot plugin.

While this recipe shows a pure CakePHP approach, there are more involved
and scalable alternatives. One of the most used tools is Gearman, available
at http://gearman.org/.

The Robot plugin allows us to schedule tasks for later execution, and have those tasks run by
a shell. The tasks themselves are actually CakePHP controller actions, which are run by the
shell at the specified time.

This recipe shows us how to use the Robot plugin to send an e-mail after a user has signed
up for our newsletters, and how to have the shell in the Robot plugin periodically check for
pending tasks and run them as they become available.

Chapter 8

245

Getting ready
To go through this recipe we need some data to work with. Follow the Getting ready section of
the previous recipe.

We need to download the Robot plugin. Go to http://github.com/mariano/robot/
downloads and download the latest release. Uncompress the downloaded file into your app/
plugins folder. You should now have a directory named robot inside app/plugins.

Run the SQL statements found in the app/plugins/robot/config/sql/robot.sql file
to create the tables required by the Robot plugin.

How to do it...
1.	 Create a file named subscribers_controller.php and place it in your

app/controllers folder, with the following contents:
<?php
class SubscribersController extends AppController {
 public function add() {
 if (!empty($this->data)) {
 $this->Subscriber->create();
 if ($this->Subscriber->save($this->data)) {
 $this->Session->setFlash('You have been subscribed!');
 $this->redirect('/');
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 }
 }
 public function welcome() {
 }
}
?>

2.	 Create a folder named subscribers in your app/views folder. Create a file named
add.ctp and place it in the folder app/views/subscribers, with the following
contents:
<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'legend' => 'Subscribe',
 'name',
 'email'
));

Working with Shells

246

echo $this->Form->end('Submit');
?>

3.	 Create a file named welcome.ctp and place it in the app/views/subscribers
folder, with the following contents:
<h1>Welcome to my site!</h1>

4.	 Add the following property to the beginning of the SubscribersController class
(change the delivery settings of the Email component to match your needs):
public $components = array(
 'Email' => array(
 'delivery' => 'smtp',
 'smtpOptions' => array(
 'host' => 'smtp.email.com',
 'username' => 'smtpUser',
 'password' => 'smtpPassword'
)
)
);

5.	 Edit the add() method of the SubscribersController class and make the
following changes:
public function add() {
 if (!empty($this->data)) {
 $this->Subscriber->create();
 if ($this->Subscriber->save($this->data)) {
 ClassRegistry::init('Robot.RobotTask')->schedule(
 array('action'=>'welcome'),
 array(
 'name' => $this->data['Subscriber']['email'],
 'email' => $this->data['Subscriber']['email']
)
);
 $this->Session->setFlash('You have been subscribed!');
 $this->redirect('/');
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 }
}

Chapter 8

247

6.	 While still editing the SubscribersController class, replace the welcome()
method with the following contents:
public function welcome() {
 if (isset($this->params['robot'])) {
 $subscriber = $this->params['robot'];

 $this->Email->sendAs = 'html';
 $this->Email->subject = 'Welcome to my site!';
 $this->Email->from = 'My Application <info@email.com>';
 $this->Email->to = $subscriber['name'] . '
<'.$subscriber['email'].'>';

 return ($this->Email->send('Hi, and welcome
to my site!') !== false);
 }
}

You can now browse to http://localhost/subscribers/add and enter your name and
e-mail address. Now run the robot shell with the following command:

If you are on a GNU Linux / Mac / Unix system:

../cake/console/cake robot.robot run

If you are on Microsoft Windows:

..\cake\console\cake.bat robot.robot run

You should get an output similar to what is shown in the following screenshot:

Working with Shells

248

The robot is informing us that a task executed the CakePHP URL /subscribers/welcome
successfully, after which we should receive a welcome e-mail.

How it works...
We started with a basic controller that takes new subscriptions and saves them, redirecting
to a welcome screen after the record is created. Then we added the Email component to our
controller, as it will be used for sending e-mails.

We continued by modifying the add() method to create the scheduled task. We scheduled
a task using the schedule() method of the RobotTask model located in the Robot plugin.
This method takes up to three arguments:

Argument Purpose
action The URL to a CakePHP action, which can be given as a string or as an array.
parameters Optional parameters to send to the controller action specified in action.

Defaults to no parameters.
scheduled The time at which the action should be executed. This can be either a

specific time stamp (in seconds since the Unix Epoch, which is January 1,
1970 00:00:00 GMT), or any string that can be used by the PHP function
strtotime(). Defaults to null, which means the task should be
executed as soon as possible.

In our add() method, we set the action argument to the welcome action of the current
controller, and send two parameters: name, and email. These parameters are available to
the called action through the $this->params['robot'] array.

In fact, whenever a controller action is called through the robot shell,
$this->params['robot'] will be available. If no parameters were specified when
scheduling the task, this array will be empty, hence the check with isset() instead of
!empty() in the welcome() method.

When called through the robot shell, the welcome() method uses the given parameters to
build and send the e-mail. It returns a Boolean value to indicate the success of the executed
task. If no value is returned, the task is assumed to have succeeded.

To test the Robot plugin, we ended the recipe by signing up as a subscriber, and then running
the robot. Naturally, the application should not have to wait for us to manually run the robot
shell in order for e-mails to go out. We need to add the shell to our list of automated tasks,
commonly known as CRON tasks on most operative systems.

Assuming your application lives at /var/www/myapp, and that the path to your PHP binary
is /usr/bin/php, the following would be the command that should be included as an
automated task in your operative system:

Chapter 8

249

/usr/bin/php -q /var/www/myapp/cake/console/cake.php -app /var/www/
myapp/app robot.robot run -silent

Notice the silent option. This tells the robot plugin to output no messages unless an error
is found. This is particularly important when adding this command to our list of automated
tasks, as it may be configured to e-mail the output of any executed command.

When adding this command to our list of automated tasks, we have to decide how often we
want the robot to check for tasks. If we are interested in immediate results, we should set the
robot to run every minute. However, what happens if at second 0 of a given minute the robot
finds no tasks? We will have 59 seconds of idle time.

Fortunately, the plugin offers an interesting solution to this problem. Using the parameter
daemon, we tell the Robot plugin to wait for tasks even if there are none available. If we try
to manually run it with this option using the following command:

$ cake/console/cake robot.robot run -daemon

we will notice the shell complains, saying that there is no limit specified. This is because
the robot should not be set to wait for tasks indefinitely, as any PHP fatal error that may be
provoked by a called action could render the robot useless.

Instead, we can use the time parameter to limit the number of seconds to which the robot
should wait for tasks. If we wanted to run the robot every minute, this limit should be set to
59 seconds:

$ cake/console/cake robot.robot run -daemon -time 59

This means that we would have a robot waiting up to 59 seconds for tasks, after which the
next robot run will be triggered.

9
Internationalizing

Applications

In this chapter, we will cover:

ff Internationalizing controller and view texts

ff Internationalizing model validation messages

ff Translating strings with dynamic content

ff Extracting and translating text

ff Translating database records with the Translate behavior

ff Setting and remembering the language

Introduction
This chapter includes a set of recipes that allow the reader to internationalize all aspects of
their CakePHP applications, including static content, such as those available in views, and
dynamic content, such as database records.

The first two recipes show how to allow text that is part of any CakePHP view or model
validation messages to be ready for translation. The third recipe shows how to translate more
complex expressions. The fourth recipe shows how to run CakePHP's built-in tools to extract all
static content that needs translation, and then translate that content to different languages.
The fifth recipe shows how to translate database records. Finally, the last recipe shows how to
allow users to change the current application language.

Internationalizing Applications

252

Internationalizing controller and view texts
In this recipe, we will learn how to internationalize text that is located in our application views,
and have that content ready for translation.

Getting ready
To go through this recipe, we need some data to work with. Create a table named articles
with the following SQL statement:

CREATE TABLE `articles`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `title` VARCHAR(255) NOT NULL,
 `body` TEXT NOT NULL,
 `created` DATETIME NOT NULL,
 `modified` DATETIME NOT NULL,
 PRIMARY KEY(`id`)
);

Now add some sample data to this table with the following statement:

INSERT INTO `articles`(`title`, `body`, `created`, `modified`) VALUES
 ('First Article', 'Body for first article', NOW(), NOW()),
 ('Second Article', 'Body for second article', NOW(), NOW()),
 ('Third Article', 'Body for third article', NOW(), NOW());

Create the controller for this table in a file named articles_controller.php and place it
in your app/controllers folder, with the following contents:

<?php
class ArticlesController extends AppController {
 public function index() {
 $this->paginate['limit'] = 2;
 $articles = $this->paginate();
 $this->set(compact('articles'));
 }
 public function add() {
 if (!empty($this->data)) {
 $this->Article->create();
 if ($this->Article->save($this->data)) {
 $this->Session->setFlash('Article saved');
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Please correct the errors');
 }

Chapter 9

253

 }
 }
 public function view($id) {
 $article = $this->Article->find('first', array(
 'conditions' => array('Article.id' => $id)
));
 if (empty($article)) {
 $this->cakeError('error404');
 }
 $this->set(compact('article'));
 }
}
?>

Create a file named article.php and place it in your app/models folder, with the following
contents:

<?php
class Article extends AppModel {
 public $validate = array(
 'title' => 'notEmpty',
 'body' => 'notEmpty'
);
}
?>

Create a folder named articles in your app/views folder, and inside that folder create a
file named index.ctp with the following contents:

<h1>Articles</h1>
<p>
<?php echo $this->Paginator->counter(); ?>
 -
<?php echo $this->Paginator->prev(); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(); ?>
</p>
<p>
<?php echo count($articles) . ' articles: '; ?>
</p>

<?php foreach($articles as $article) { ?>
 <?php echo $this->Html->link(
 $article['Article']['title'],

Internationalizing Applications

254

 array('action'=>'view', $article['Article']['id'])
); ?>
<?php } ?>

<p><?php echo $this->Html->link('Create article',
array('action'=>'add')); ?></p>

Create a file named add.ctp and place it in your app/views/articles folder, with the
following contents:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'title',
 'body'
));
echo $this->Form->end('Save');
?>

Create a file named view.ctp and place it in your app/views/articles folder, with the
following contents:

<h1><?php echo $article['Article']['title']; ?></h1>
<?php echo $article['Article']['body']; ?>

How to do it...
1.	 Edit the articles_controller.php file located in your app/controllers folder

and make the following changes to the add() method:
public function add() {
 if (!empty($this->data)) {
 $this->Article->create();
 if ($this->Article->save($this->data)) {
 $this->Session->setFlash(__('Article saved', true));
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash(__('Please correct the errors',
true));
 }
 }
}

Chapter 9

255

2.	 Edit the file add.ctp located in your app/views/articles folder and make the
following changes:
<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'legend' => __('New Article', true),
 'title' => array('label' => __('Title:', true)),
 'body' => array('label' => __('Body:', true))
));
echo $this->Form->end(__('Save', true));
?>

3.	 Finally, edit the file index.ctp located in your app/views/articles folder and
make the following changes:
<h1><?php __('Articles'); ?></h1>
<p>
<?php echo $this->Paginator->counter(__('Showing records %start%-
%end% in page %page% out of %pages%', true)); ?>
 -
<?php echo $this->Paginator->prev(__('<< Previous', true)); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(__('Next >>', true)); ?>
</p>
<p>
<?php
$count = count($articles);
echo $count . ' ' . __n('article', 'articles', $count, true) . ':
';
?>
</p>

<?php foreach($articles as $article) { ?>
 <?php echo $this->Html->link(
 $article['Article']['title'],
 array('action'=>'view', $article['Article']['id'])
); ?>
<?php } ?>

<p><?php echo $this->Html->link(__('Create article', true),
array('action'=>'add')); ?></p>

Internationalizing Applications

256

If you now browse to http://localhost/articles, you should see a paginated list of
articles, as shown in the following screenshot:

How it works...
CakePHP offers two main methods (amongst others) to allow developers to specify content
that can be translated: __() and __n(). The naming of these methods may seem a bit odd,
but they are largely influenced by Perl's implementation of gettext, a tool that is part of the
GNU Translation Project.

The __() method is used to translate static text, and takes up to two arguments:

Argument Purpose
singular Text that should be translated to the current language.
return If set to true, the translated text will be returned instead of echoed to the

client. Defaults to false.

The __n() method is used to translate static text that could change if a certain value is either
singular or plural, and takes up to four arguments:

Argument Purpose
singular Text that should be used if the given value in count is singular, and that

will be translated to the current language when used.
plural Text that should be used if the given value in count is plural, and that will

be translated to the current language when used.

Chapter 9

257

Argument Purpose
count A variable or numeric value that holds the value that should be used to

determine if either the singular or plural text is to be used.
return If set to true, the translated text will be returned instead of echoed to the

client. Defaults to false.

We start by changing the flash messages in the ArticlesController class to use the
__() method, specifying that the translated string should be returned rather than echoed
to the client. We continue by modifying the add.ctp view so that all labels and the form
legend can be translated.

Similarly, we wrap the title in the index.ctp view with the translator function. We then use
the first parameter of the counter(), next(), and prev() methods that are part of the
PaginatorHelper class to pass the translated version of the appropriate pagination text.
Finally, we use the __n() function to choose the correct translated text depending on the
value of the count variable.

When using the __n() function you should only use a variable as its
third parameter. Using expressions (including array indexes) may produce
unexpected results when running CakePHP's extractor shell, which is
covered in the recipe Extracting and translating text.

Domains and categories
The translation functions used in this recipe are actually wrappers around the translate()
method of CakePHP's built-in I18n class. This method not only allows simple translations, but
also allows the developer to specify the domain from which translated texts are obtained, and
the category to which the text to be translated belongs to.

Domains allow you to separate groups of translation text into separate files. By default, when
no domain is specified, CakePHP assumes a domain named default. If you want to specify
the domain in which a translated text should be looked for, use the __d() and __dn()
translation functions. For example, to look for a translated text in the my_plugin domain,
you would do:

$translated = __d('my_plugin', 'Hello World', true);

Internationalizing Applications

258

Categories allow for a further grouping of translated texts by grouping the translation files
into separate directories, and provide further meaning to the translated text. By default,
CakePHP will assume that translated texts belong to the LC_MESSAGES category. If you
wish to change the category, use the __dc() and __dcn() translator functions, by setting
its next-to-last argument, return, to the desired category, which can be any of the following
defined constants with the respective fixed value:

ff LC_ALL: 0

ff LC_COLLATE: 1

ff LC_CTYPE: 2

ff LC_MONETARY: 3

ff LC_NUMERIC: 4

ff LC_TIME: 5

ff LC_MESSAGES: 6

For example, to look for a translated text in the default domain and the LC_MESSAGES
category you would do:

$translated = __dc('default', 'Hello World', 6, true);

When looking forward to using categories, always use the category value
previously given in the list rather than the constant name, as this constant is
platform-dependent.

See also
ff Internationalizing model validation messages

ff Extracting and translating text

Internationalizing model validation
messages

In this recipe, we will learn different approaches for the same need: translating model
validation messages.

Getting ready
To go through this recipe, we need a basic application skeleton to work with. Go through the
previous recipe.

Chapter 9

259

How to do it...
Edit the file article.php located in your app/models folder and make the following
changes to the validate property:

public $validate = array(
 'title' => array(
 'required' => 'notEmpty'
),
 'body' => array(
 'required' => 'notEmpty'
)

);

There are two ways to have validation messages translated. The first one requires you to
override the model constructor by adding the following implementation to the Article class
defined in your app/models/article.php file:

public function __construct($id = false, $table = null, $ds = null) {
 foreach($this->validate as $field => $rules) {
 if (!is_array($rules)) {
 $rules = (array) $rules;
 }
 foreach($rules as $key => $rule) {
 if (!is_array($rule)) {
 $rules[$key] = compact('rule');
 }
 }
 $this->validate[$field] = $rules;
 }

 $this->validate = Set::merge($this->validate, array(
 'title' => array(
 'required' => array('message' => __('A title must be
specified', true))
),
 'body' => array(
 'required' => array('message' => __('You must define the
body', true))
)
));

 parent::__construct($id, $table, $ds);
}

Internationalizing Applications

260

The alternative way to translate validation messages is to move these messages to the
view. Instead of overriding and defining the messages in the model constructor, edit your
app/views/articles/add.ctp view file and make the following changes to it:

<?php
echo $this->Form->create();
echo $this->Form->inputs(array(
 'title' => array(

 'label' => __('Title:', true),

 'error' => array(

 'required' => __('A title must be specified', true)

)

),

 'body' => array(

 'label' => __('Body:', true),

 'error' => array(

 'required' => __('You must define the body', true)

)

)

));
echo $this->Form->end(__('Save', true));
?>

Both ways should produce the same result. If you now browse to http://localhost/
articles/add and submit the form without entering any values, you should see the
validation messages shown in the following screenshot:

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

261

How it works...
Before attempting to provide the error messages for each validation rule, we need to name
each of our rules. We do so by modifying the Article model so that each rule defined is
indexed by a name. In our case we choose required as the name for the validation based
on CakePHP's built-in notEmpty rule.

The first method we used to specify the validation messages shows a practical approach when
we want to centralize all validation messages in the model. We override the model constructor
so that from within this constructor we specify the error messages that should be translated.
We needed to implement the constructor because class property values cannot use an
expression other than a static assignment, so the following block of code would produce a
PHP syntax error:

public $validate = array(
 'title' => array(
 'required' => array(

Internationalizing Applications

262

 'rule' => 'notEmpty',
 'message' => __('Nothing defined!', true) // SYNTAX ERROR
)
)
);

In this constructor implementation, we start by making sure that the validate property is
an array of rules, indexed by field name, and that each set of rules is itself an array indexed by
name, having as its value another array where at the very least the rule setting is defined.

Once we are sure that the validate property has the right format, we merge the validation
messages for each rule using the __() translator function to translate the messages.
Finally, we call the parent constructor to ensure that the model is built properly.

The second method described in this recipe moves the responsibility of declaring each
validation error message to the view, by means of the error setting available in the input()
method of the FormHelper class. This setting is set to an array, indexed by validation name,
and the value is set to the error message shown when the respective validation fails.

See also
ff Extracting and translating text

Translating strings with dynamic content
In this recipe, we will learn how to allow strings consisting of parts that are not static, such as
variable values, to be translatable.

Getting ready
To go through this recipe, we need a basic application skeleton to work with. Go through the
entire recipe Internationalizing controller and view texts.

How to do it...
1.	 Edit the file articles_controller.php located in your app/controllers folder

and make the following changes to the add() method:
public function add() {
 if (!empty($this->data)) {
 $this->Article->create();
 if ($this->Article->save($this->data)) {

Chapter 9

263

 $this->Session->setFlash(
 sprintf(__('Article "%s" saved', true), $this-
>Article->field('title'))
);
 $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Please correct the errors');
 }
 }
}

2.	 Edit the view file index.ctp located in your app/views/articles folder and
make the following changes:
<h1><?php __('Articles'); ?></h1>
<p>
<?php echo $this->Paginator->counter(__('Showing records %start%-
%end% in page %page% out of %pages%', true)); ?>
 -
<?php echo $this->Paginator->prev(__('<< Previous', true)); ?>

<?php echo $this->Paginator->numbers(); ?>

<?php echo $this->Paginator->next(__('Next >>', true)); ?>
</p>
<p>
<?php
$count = count($articles);
printf(__n('%d article', '%d articles', $count, true), $count);
?>
</p>

<?php foreach($articles as $article) { ?>
 <?php echo $this->Html->link(
 $article['Article']['title'],
 array('action'=>'view', $article['Article']['id'])
); ?>
<?php } ?>

<p><?php echo $this->Html->link(__('Create article', true),
array('action'=>'add')); ?></p>

Internationalizing Applications

264

How it works...
When looking forward to including dynamic information, such as the value of a variable, or in
this case, the value of a table field in the database, one can be tempted to simply append the
variable to the string that is sent to the translator function:

$translated = __('Hello ' . $name, true); // This is wrong

This is not a valid expression, as CakePHP's extractor, shown in the recipe Extracting and
translating text, expects only static strings as arguments to the translator functions, and other
languages may need to re-order the sentence. Therefore, we need to use some way of string
interpolation, so we chose to use the most common ones offered by PHP: the printf() and
sprintf() functions.

Both functions take the same number and type of arguments. The first argument is mandatory
and specifies the string to use for interpolation, while any subsequent argument is used to
produce the final string. The only difference between printf() and sprintf() is that the
former will output the resulting string, while the later simply returns it.

We start by changing the success message given by the ArticlesController class
whenever an article is created. We use sprintf() as we need to send it through to the
setFlash() method of the Session component. In this case, we use the expression %s to
interpolate the value of the title field for the newly created article.

Similarly, our latest change uses %d to interpolate the decimal value of the variable count,
and uses printf() to output the result string.

Reordering and reusing interpolation arguments
When using expressions such as %s or %d to tell printf() and sprintf() where to place
the value of an argument, we have no flexibility in terms of value positioning, and no practical
way to reuse a value, as each of those expressions needs to match a specific argument. Let
us assume the following expression:

printf('Your name is %s and your country is %s', $name, $country);

The first %s expression gets replaced with the value of the name variable, while the last %s
expression is replaced with the value of the country variable. What if we wanted to change
the order of these values in the string without altering the order of the arguments that are
sent to printf()?

We can instead specify which argument is used by an interpolation expression by referring
to an argument number (name being the argument number 1, and country argument
number 2):

printf('You are from %2$s and your name is %1$s', $name, $country);

Chapter 9

265

This also allows us to reuse an argument without having to add it as an extra argument
to printf():

printf('You are from %2$s and your name is %1$s . Welcome %1$s!',
$name, $country);

See also
ff Extracting and translating text

Extracting and translating text
In this recipe, we will learn how to extract all strings that need translation from our CakePHP
applications and then perform the actual translations using free software.

Getting ready
To go through this recipe, we need a basic application skeleton to work with. Go through the
entire recipe Internationalizing controller and view texts.

We also need to have Poedit installed in our system. Go to http://www.poedit.net/
download.php and download the appropriate file for your operative system.

How to do it...
From the command line, and while in your app/ directory, issue the following command:

If you are on a GNU Linux / Mac / Unix system:

../cake/console/cake i18n extract

If you are on Microsoft Windows:

..\cake\console\cake.bat i18n extract

Internationalizing Applications

266

You should accept the default options, as shown in the following screenshot:

After answering the final question, the shell should go through your application files
and generate a translation template in a file named default.pot, placing it in your
app/locale folder.

Open Poedit, and then click on the menu File, and option New catalog from POT file.
You should now see an open file dialog box. Browse to your app/locale folder, select the
default.pot file, and click the Open button. A setting window should appear, as shown
in the following screenshot:

Chapter 9

267

In the Settings window, enter the desired project name and project information. In the
Plural Forms field you should enter an expression that tells Poedit how to recognize plural
translations. For most languages, such as English, Spanish, German and Portuguese, you
should enter the following expression:

nplurals=2; plural=(n != 1);

More information about plural forms and which value should be
given, depending on the language you are translating to, is available
at http://drupal.org/node/17564.

Once you have entered all the desired details, click on the OK button. You will now be
asked where to store the translated file. Create a folder named spa and place it in your
app/locale folder. Inside the spa folder, create a folder named LC_MESSAGES. Then,
while in Poedit's dialog box, select the folder app/locale/spa/LC_MESSAGES and click
the button Save without changing the file name, which should be default.po.

Internationalizing Applications

268

Poedit will now show you all the original strings, and allow you to translate each by entering
the desired translation in the bottom text area. After you enter your translations, Poedit may
look like the following screenshot:

Click on the menu File, and then option Save to save the translated file. There should now be
two files in your app/locale/spa/LC_MESSAGES folder: default.po and default.mo.

How it works...
CakePHP's extractor will first ask which paths to process. When all paths have been specified,
it will browse recursively through its directories and look for any use of a translator function
(any of __(), __n(), __d(), __dn(), __dc(), __dcn(), and __c()) in PHP and view
files. For each found usage, it will extract the strings that need translation (first argument on
calls to __() and __c(); the second argument on calls to __d() and __dc(); the first and
second arguments on calls to __n(); and the second and third arguments on calls to __dn()
and __dcn().

Chapter 9

269

It is important to only use static strings, avoiding any PHP expressions, on
the arguments the extractor looks for. If you want to learn how to interpolate
variable values in the strings that need translation, see the recipe Translating
strings with dynamic content.

Once CakePHP's extractor has obtained all strings that need translation, it will create the
appropriate translation template files. If you used any translator function that specifies a
domain (__d(), __dn(), __dc(), and __dcn()), you can optionally merge all strings into
one template file, or have each domain create a separate template file. Template files have
the pot extension, and use the domain name as its filename (default.pot being the
default template file).

If you open default.pot with a text editor, you will notice that it starts with a header that
includes several settings, and then includes two lines for each string that needs translation: a
line that defines a msgid (the string to be translated), and a line that has an empty string for
msgstr (the translated string).

We then use Poedit to open this template file, translate the strings, and save it in the
appropriate directory (app/locale/spa/LC_MESSAGES), where Poedit will create two files:
default.po and default.pot. If you open default.po with a text editor, you will notice it
almost looks exactly as the template file does, except that the header settings have changed
to what we defined, and the msgid lines are filled with our translations. The default.mo file
is a binary version of the default.po file, also generated by Poedit, and is used by CakePHP
to speed processing of the translation file.

Translating database records with the
Translate behavior

In this recipe, we will learn how to allow translation of database records by means of
CakePHP's Translate behavior.

Getting ready
To go through this recipe, we need a basic application skeleton to work with. Go through the
entire recipe Internationalizing controller and view texts.

How to do it...
From the command line, and while in your app/ directory, issue the following command:

Internationalizing Applications

270

If you are on a GNU Linux / Mac / Unix system:

../cake/console/cake i18n initdb

If you are on Microsoft Windows:

..\cake\console\cake.bat i18n initdb

Accept all the default answers. The shell should finish by creating a table named i18n, as
shown in the following screenshot:

Edit your app/models/article.php file and add the following property:

<?php
class Article extends AppModel {
 public $validate = array(
 'title' => 'notEmpty',
 'body' => 'notEmpty'
);
 public $actsAs = array(

 'Translate' => array('title', 'body')

);

}
?>

Chapter 9

271

We now need to move the values for the title and body fields from the articles table
to the i18n table, and then drop those fields from the articles table. Issue the following
SQL statements:

INSERT INTO `i18n`(`locale`, `model`, `foreign_key`, `field`,
`content`)
SELECT 'eng', 'Article', `articles`.`id`, 'title', `articles`.`title`
FROM `articles`;

INSERT INTO `i18n`(`locale`, `model`, `foreign_key`, `field`,
`content`)
SELECT 'eng', 'Article', `articles`.`id`, 'body', `articles`.`body`
FROM `articles`;

ALTER TABLE `articles`
 DROP COLUMN `title`,
 DROP COLUMN `body`;

Add the Spanish translations for our articles by Issuing the following SQL statements:

INSERT INTO `i18n`(`locale`, `model`, `foreign_key`, `field`,
`content`) VALUES
 ('spa', 'Article', 1, 'title', 'Primer Artículo'),
 ('spa', 'Article', 1, 'body', 'Cuerpo para el primer Artículo'),
 ('spa', 'Article', 2, 'title', 'Segundo Artículo'),
 ('spa', 'Article', 2, 'body', 'Cuerpo para el segundo Artículo'),
 ('spa', 'Article', 3, 'title', 'Tercer Artículo'),
 ('spa', 'Article', 3, 'body', 'Cuerpo para el tercer Artículo');

Finally, edit your app/config/bootstrap.php file and add the following above the PHP
closing tag:

Configure::write('Config.language', 'eng');

If you now browse to http://localhost/articles, you should see the same listing of
articles, as shown in the first screenshot (recipe Internationalizing controller and view texts).

Internationalizing Applications

272

How it works...
We start by using the shell to create the table required by the Translate behavior. This table
is by default named i18n, and contains (besides its primary key) the following fields:

Field Purpose
locale The locale (language) this particular record field is being translated to.
model The model where the record being translated belongs.
foreign_key The ID (primary key) in model that identifies the record being translated.
field The field being translated.
content The translated value for the record field.

We then add the Translate behavior to our Article model, and set it to translate the
title and body fields. This means that these fields will no longer be a part of the articles
table, but instead be stored in the i18n table. Using the model and foreign_key values
in the i18n table, the Translate behavior will fetch the appropriate values for these fields
whenever an Article record is obtained matching the application language.

We copy the values of the title and body fields into the i18n table, and we then remove
these fields from the articles table. No change is needed in the find() call that is used in
our ArticlesController class. Furthermore, the creation of articles will continue to work
transparently, as the Translate behavior will use the current language when saving records
through the Article model.

The final step is telling CakePHP which is the default application language, by setting the
Config.language configuration setting. If this step is omitted, CakePHP will obtain the current
language by looking into the HTTP_ACCEPT_LANGUAGE header sent by the client browser.

Using separate translation tables
Any model that uses the Translate behavior will by default use this i18n table to store the
different translations for each of its translated fields. This could be troublesome if we have a
large number of records, or a large number of translated models. Fortunately, the Translate
behavior allows us to configure a different translation model.

As an example, let us assume that we want to store all article translations in a table called
article_translations. Create the table and then copy the translated records from the
i18n table by issuing the following SQL statements:

CREATE TABLE `article_translations`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `model` VARCHAR(255) NOT NULL,
 `foreign_key` INT UNSIGNED NOT NULL,
 `locale` VARCHAR(6) NOT NULL,
 `field` VARCHAR(255) NOT NULL,

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 9

273

 `content` TEXT default NULL,
 KEY `model__foreign_key`(`model`, `foreign_key`),
 KEY `model__foreign_key__locale`(`model`, `foreign_key`, `locale`),
 PRIMARY KEY(`id`)
);

INSERT INTO `article_translations`
SELECT `id`, `model`, `foreign_key`, `locale`, `field`, `content`
FROM `i18n`;

Create a file named article_translation.php and place it in your app/models folder,
with the following contents:

<?php
class ArticleTranslation extends AppModel {
 public $displayField = 'field';
}
?>

The displayField property in the translation model tells the Translate behavior
which field in the table holds the name of the field being translated.

Finally, edit your app/models/article.php file and make the following changes:

<?php
class Article extends AppModel {
 public $validate = array(
 'title' => 'notEmpty',
 'body' => 'notEmpty'
);
 public $actsAs = array(
 'Translate' => array('title', 'body')
);
 public $translateModel = 'ArticleTranslation';

}
?>

See also
ff Setting and remembering the language

Internationalizing Applications

274

Setting and remembering the language
In this recipe, we will learn how to allow users to change the current language and have their
language selection be remembered through the use of cookies.

Getting ready
To go through this recipe we need a fully internationalized application to work with.
Go through the entire recipe Translating database records with the Translate behavior.

We also need an application layout that we can modify. Copy the file default.ctp from
cake/libs/view/layouts to your app/views/layouts directory.

How to do it...
1.	 Edit your app/config/bootstrap.php file and add the following right above the

PHP closing tag:
Configure::write('Config.languages', array(
 'eng' => __('English', true),
 'spa' => __('Spanish', true)
));

2.	 Edit the default.ctp layout file located in your app/views/layouts folder and
add the following where you want the list of languages to be included (such as right
above the call to the flash() method of the Session component):
<div style="float: right">
<?php
$links = array();
$currentLanguage = Configure::read('Config.language');
foreach(Configure::read('Config.languages') as $code => $language)
{
 if ($code == $currentLanguage) {
 $links[] = $language;
 } else {
 $links[] = $this->Html->link($language, array('lang' =>
$code));
 }
}
echo implode(' - ', $links);
?>
</div>

Chapter 9

275

The Config.language setting used earlier was specified in the app/config/
bootstrap.php file while going through the Translating database records
with the Translate behavior.

3.	 Create a file named app_controller.php and place it in your app/ folder, with the
following contents:
<?php
class AppController extends Controller {
 public $components = array('Language', 'Session');
}
?>

4.	 Finally, create a file named language.php and place it in your app/controller/
components folder, with the following contents:
<?php
class LanguageComponent extends Object {
 public $controller = null;
 public $components = array('Cookie');
 public $languages = array();

 public function initialize($controller) {
 $this->controller = $controller;
 if (empty($languages)) {
 $this->languages = Configure::read('Config.languages');
 }

 $this->set();
 }

 public function set($language = null) {
 $saveCookie = false;
 if (empty($language) && isset($this->controller)) {
 if (!empty($this->controller->params['named']['lang'])) {
 $language = $this->controller->params['named']
['lang'];
 } elseif (!empty($this->controller->params['url']
['lang'])) {
 $language = $this->controller->params['url']['lang'];
 }
 if (!empty($language)) {
 $saveCookie = true;
 }
 }

 if (empty($language)) {
 $language = $this->Cookie->read('language');
 if (empty($language)) {
 $saveCookie = true;
 }
 }

Internationalizing Applications

276

 if (empty($language) && !array_key_exists($language, $this-
>languages)) {
 $language = Configure::read('Config.language');
 }

 Configure::write('Config.language', $language);
 if ($saveCookie) {
 $this->Cookie->write('language', $language, false, '1
year');
 }
 }
}

?>

If you now browse to http://localhost/articles you should see the list of articles,
and in the top-right area, a link to switch the current language to Spanish. Clicking on it
should display the Spanish version of the articles, and change all available texts to the
selected language, as shown in the following screenshot:

How it works...
We start by defining all available languages so that we can easily include a link to switch the
current language. We use this list to construct the list of links and place it in the default.
ctp layout file, only allowing clicks on languages other than the current application language.

The current language is set in CakePHP's configure variable, Config.language, which
is set to a default language (eng in our case) in the configuration file bootstrap.php.
When a language change is needed, this setting should be changed before the first use
of a translator function.

Chapter 9

277

To keep a clean controller, we decided to create a component called Language to handle
language changes. This component will look for a named or URL parameter called lang. If
no language is specified, the component will look for the current language by looking into a
cookie.

If no cookie is set, or if a language change is requested, the component will save the current
language in a cookie named language that lasts for one year.

10
Testing

In this chapter, we will cover:

ff Setting up the test framework

ff Creating fixtures and testing model methods

ff Testing controller actions and their views

ff Using mocks to test controllers

ff Running tests from the command line

Introduction
This chapter covers one of the most interesting areas of application programming: unit
testing through CakePHP's built-in tools, which offers a complete and powerful unit testing
framework.

The first recipe shows how to set up the test framework so that we can create our own test
cases. The second recipe shows how to create test data (fixtures) and use that data to test
model methods. The third and fourth recipes show how to test controller actions, and how to
test that our views are showing what we expect. The last recipe shows how to run the test in a
non-ordinary fashion.

Setting up the test framework
In this recipe, we will learn how to prepare our CakePHP application with all the elements
needed to create our own unit tests, setting up the foundation for the rest of the recipes in
this chapter.

Testing

280

Getting ready
To go through the recipes included in this chapter, we need some data to work with. Create
the following tables by issuing these SQL statements:

CREATE TABLE `articles`(
 `id`INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `title` VARCHAR(255) NOT NULL,
 `body` TEXT NOT NULL,
 PRIMARY KEY(`id`)
);

CREATE TABLE `users`(
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

CREATE TABLE `votes`(
 `id` INT UNSIGNED NOT NULL AUTO_INCREMENT,
 `article_id` INT NOT NULL,
 `user_id` INT NOT NULL,
 `vote` INT UNSIGNED NOT NULL,
 PRIMARY KEY(`id`),
 FOREIGN KEY `votes__articles`(`article_id`) REFERENCES
`articles`(`id`),
 FOREIGN KEY `votes__users`(`user_id`) REFERENCES `users`(`id`)
);

Create a controller in a file named articles_controller.php and place it in your
app/controllers folder, with the following contents:

<?php
class ArticlesController extends AppController {
 public function vote($id) {
 if (!empty($this->data)) {
 if ($this->Article->vote($id, $this->data)) {
 $this->Session->setFlash('Vote placed');
 return $this->redirect(array('action'=>'index'));
 } else {
 $this->Session->setFlash('Please correct the errors');

 }
 }
 }

Chapter 10

281

 public function view($id) {
 $article = $this->Article->get($id);
 if (empty($article)) {
 $this->Session->setFlash('Article not found');
 return $this->redirect(array('action' => 'index'));
 }
 $this->set(compact('article'));
 }
}
?>

Create a file named article.php and place it in your app/models folder, with the
following contents:

<?php
class Article extends AppModel
 {
 public $hasMany = array('Vote');

 public function get($id)
 {
 return $this->find('first', array(
 'fields' => array(
 'Article.*',
 'AVG(Vote.vote) AS vote'
),
 'joins' => array(
 array(
 'type' => 'LEFT',
 'table' => $this->Vote->getDataSource()-
>fullTableName($this->Vote->table),
 'alias' => 'Vote',
 'conditions' => array(
 'Vote.article_id = Article.id'
)
)
),
 'conditions' => array('Article.id' => $id),
 'group' => array(
 'Article.id'
),
 'recursive' => -1
));
 }

 public function vote($id, $data = array()) {
 if (empty($data) || empty($data['Vote'])) {

Testing

282

 throw new Exception("No data specified");
 }

 $data['Vote']['article_id'] = $id;

 $this->Vote->create($data);
 if (!$this->Vote->validates()) {
 return false;
 }

 $conditions = array(
 'Vote.user_id' => $data['Vote']['user_id'],
 'Vote.article_id' => $data['Vote']['article_id']
);
 if ($this->Vote->hasAny($conditions)) {
 return false;
 }

 return ($this->Vote->save($data) !== false);
 }
}
?>

Create a file named vote.php and place it in your app/models folder with the following
contents:

<?php
class Vote extends AppModel {
 public $belongsTo = array('Article', 'User');
 public $validate = array(
 'article_id' => array('required' => true, 'rule' => 'notEmpty'),
 'user_id' => array('required' => true, 'rule' => 'notEmpty'),
 'vote' => array(
 'required' => array('required' => true, 'rule' =>
'notEmpty'),
 'range' => array(
 'rule' => array('range', 0, 6),
 'allowEmpty' => true
)
)
);
}
?>

Chapter 10

283

Create a folder named articles and place it in your app/views folder. Create a file named
view.ctp and place it in your app/views/articles folder, with the following contents:

<h1><?php echo $article['Article']['title']; ?></h1>
Vote: <?php echo number_format($article[0]['vote'],
1); ?>
<p><?php echo $article['Article']['body']; ?></p>

How to do it...
1.	 Download the 1.0.1 SimpleTest release from https://sourceforge.net/

projects/simpletest/files/simpletest/simpletest_1.0.1/
simpletest_1.0.1.tar.gz/download. Uncompress the downloaded file into
your app/vendors folder. You should now have a folder named simpletest in
app/vendors.

2.	 If you now browse to http://localhost/test.php, you should see the list of
test groups available in CakePHP as shown in the next screenshot:

Testing

284

3.	 Clicking on any of these groups would execute the appropriate unit tests. For
example, if you click on the acl test group, you should see a green bar indicating
that all tests for the selected group succeeded, as shown in the next screenshot:

How it works...
CakePHP uses the SimpleTest library as the backbone of its unit testing framework. Unless we
have installed SimpleTest on our application, we will be unable to run any unit test. Installing
the library is as simple as downloading the appropriate version and extracting its contents into
our app/vendors folder.

The framework includes a broad set of unit tests that cover almost every functionality
implemented in the core. These unit tests allow the developer to report bugs against core
functionality, have them solved, and make sure those bugs do not reappear in future releases.

Creating fixtures and testing model methods
In this recipe, we will learn how to create test data that we can use to test our application
without altering real data, and how to create our own unit tests to cover model functionality.

Getting ready
To go through this recipe, we need a basic application skeleton to work with and have the
SimpleTest library installed. Go through the entire recipe, Setting up the test framework.

Chapter 10

285

How to do it...
1.	 Create a file named article_fixture.php and place it in your app/tests/

fixtures folder with the following contents:
<?php
class ArticleFixture extends CakeTestFixture {

 public $import = 'Article';
 public $records = array(
 array(
 'id' => 1,
 'title' => 'Article 1',
 'body' => 'Body for Article 1'
),
 array(
 'id' => 2,
 'title' => 'Article 2',
 'body' => 'Body for Article 2'
)
);
}
?>

2.	 Create a file named user_fixture.php and place it in your app/tests/
fixtures folder with the following contents:
<?php
class UserFixture extends CakeTestFixture {
 public $table = 'users';
 public $import = array('table' => 'users');
 public $records = array(
 array(
 'id' => 1,
 'username' => 'john.doe'
),
 array(
 'id' => 2,
 'username' => 'jane.doe'
),
 array(
 'id' => 3,
 'username' => 'mark.doe'
)
);
}
?>

Testing

286

3.	 Create a file named vote_fixture.php and place it in your app/tests/
fixtures folder, with the following contents:
<?php
class VoteFixture extends CakeTestFixture {
 public $import = 'Vote';
 public $records = array(
 array(
 'article_id' => 1,
 'user_id' => 1,
 'vote' => 4
),
 array(
 'article_id' => 1,
 'user_id' => 3,
 'vote' => 5
),
 array(
 'article_id' => 1,
 'user_id' => 2,
 'vote' => 4
),
 array(
 'article_id' => 2,
 'user_id' => 2,
 'vote' => 3
),
 array(
 'article_id' => 2,
 'user_id' => 3,
 'vote' => 4
)
);
}
?>

4.	 Create a file named article.test.php and place it in your app/tests/cases/
models folder with the following contents:

<?php
class ArticleTestCase extends CakeTestCase {
 public $fixtures = array('app.article', 'app.user', 'app.
vote');

 public function startTest($method) {
 parent::startTest($method);

Chapter 10

287

 $this->Article = ClassRegistry::init('Article');
 }

 public function endTest($method) {
 parent::endTest($method);
 ClassRegistry::flush();
 }

 public function testGet() {
 $article = $this->Article->get(1);
 $this->assertTrue(!empty($article) &&
!empty($article['Article']));
 $this->assertTrue(!empty($article[0]) &&
!empty($article[0]['vote']));
 $this->assertEqual(number_format($article[0]['vote'],
1), 4.3);

 $article = $this->Article->get(2);
 $this->assertTrue(!empty($article) &&
!empty($article['Article']));
 $this->assertTrue(!empty($article[0]) &&
!empty($article[0]['vote']));
 $this->assertEqual(number_format($article[0]['vote'],
1), 3.5);
 }

 public function testVote() {
 $result = $this->Article->vote(2, array('Vote' =>
array(
 'user_id' => 2
)));
 $this->assertFalse($result);
 $this->assertTrue(!empty($this->Article->Vote-
>validationErrors['vote']));

 $result = $this->Article->vote(2, array('Vote' =>
array(
 'user_id' => 2,
 'vote' => 6
)));
 $this->assertFalse($result);
 $this->assertEqual($this->Article->Vote-
>validationErrors['vote'], 'range');

 $result = $this->Article->vote(2, array('Vote' =>
array(
 'user_id' => 2,
 'vote' => 1
)));
 $this->assertFalse($result);

 $result = $this->Article->vote(2, array('Vote' =>

Testing

288

array(
 'user_id' => 1,
 'vote' => 1
)));
 $this->assertTrue($result);
 $article = $this->Article->get(2);
 $this->assertTrue(!empty($article[0]) &&
!empty($article[0]['vote']));
 $this->assertEqual(number_format($article[0]['vote'],
1), 2.7);

 $this->expectException();
 $this->Article->vote(2);
 }
}
?>

How it works...
When looking to test model methods, it is very important to know what data is used during
testing. Even when it is perfectly possible to test models using real application data, it is often
safer (and thus recommendable) to specify the data that will be used for testing. This way, any
modification to real data should not affect our tests, and consequently running those tests
should not affect real data.

For this very purpose, CakePHP offers the concept of fixtures, which are no more than PHP
classes that define the table structure and data used for testing models. These fixtures should
have the same name as the model they are providing data for, should extend the base class
CakeTestFixture, and should end with the word Fixture. The file name should be the
underscored version of the class name, and should be placed in the app/tests/fixtures
directory. A fixture may define the following properties:

ff name: The name of the fixture, used to determine the name of the table this fixture
creates. If the table name can be determined by other means, such as by setting
the table property, or by importing the structure from a model, then this property
is optional.

ff table: The table this fixture creates. If the fixture imports the structure from an
existing model, or if the name property is specified, then this property is optional.

ff import: This property is optional and allows the structure, and/or data, to be
imported from an existing source. If this property is set to a string, then it is a model
name from where to import the structure (not the records.) Otherwise, it should be an
array that consists of the following settings:

�� records: An optional Boolean setting. If set to true, then all records will be
imported from the specified source. Defaults to false.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 10

289

�� model: The model from where to import the structure, and/or data. If
specified, this model must exist.

�� table: The table from where to import the structure, and/or data. If the
model setting is specified, this setting is ignored and thus is optional.

�� fields: If import is not defined, then this property is mandatory. It should
be an array where each key is a field name, and each value the definition
of the field, containing settings such as: type, length, null, default,
and key. For more information about these settings, see http://book.
cakephp.org/view/1203/Creating-fixtures.

�� records: An array of records, each record itself being an array where the
keys are the field names, and the values their respective values.

We start by creating the following fixtures:

ff ArticleFixture: It imports its structure from the Article model, and defines
two records.

ff UserFixture: It imports its structure from the users table and defines three
records (Notice how we import from a table instead of a model, as we did not
create a User model).

ff VoteFixture: It imports its structure from the Vote model, and defines five
records.

After creating the fixtures, we proceed to build the test case. A test case is a PHP class without
naming restrictions that contains unit tests. It extends from CakeTestCase, and is saved
in a file ending with the suffix .test.php and placed in an appropriate subdirectory of the
app/tests/cases folder. A unit test is a method of a test case class, but only methods with
names starting with the word test are considered unit tests and thus run when the test case
is executed.

Our test case is named ArticleTestCase, and defines the fixtures property to specify
which fixtures are utilized by the test case. These names should match the fixture file name,
without the _fixture.php suffix. By means of these fixtures, we provide test data for the
models used throughout our test case.

Whenever you instantiate models from a unit test, and unless you specify otherwise through
settings sent to the ClassRegistry::init() method, CakePHP will automatically set
the model's database configuration to be test_suite, not only for the directly instantiated
models, but for any models instantiated as a result of a binding definition.

Testing

290

The test_suite database configuration, unless specifically changed by the developer, will
use the same database configuration as defined in the default configuration, and will also
set test_suite_ as a table prefix to avoid overwriting existing tables. This means that any
models that are instantiated, together with their bindings (including bindings of bindings, and
so on) should have a matching fixture, and those fixtures should be added to the test case.
If you want to avoid defining fixtures for models you do not intend to test, see the section
Extending models to avoid testing unneeded bindings in this recipe.

The first two methods in ArticleTestCase are implementations of callbacks offered by
the parent class CakeTestCase. There are four callbacks available:

ff startCase(): It executed before the first unit test method is run. This method is
executed once per test case.

ff endCase(): It executed after the last unit test method was run. This method is
executed once per test case.

ff startTest(): It executed before each unit test method is run. It receives a single
argument, which is the name of the test method that is about to be executed.

ff endTest(): It executed after each unit test method was run. It receives a single
argument, which is the name of the test method.

We use the startTest() callback to instantiate the model we intend to test (Article in
this case), and the endTest() callback to clean up the registry, a step that is not needed
for this particular test case but that serves useful in many other scenarios.

We then define two unit test methods: testGet() and testVote(). The first one is meant
to provide testing for the Article::get() method, while the later tests the creation of votes
through the Article::vote() method. In these tests, we issue different calls to the model
method we are testing, and then use some of the test case assertion methods to evaluate
these calls:

ff assertTrue(): Asserts that the provided argument evaluates to true.

ff assertFalse(): Asserts that the provided argument evaluates to false.

ff assertEqual(): Asserts that the first argument is equal to the second argument.

ff expectException(): Expects the next call to produce an exception. Because
of the way exceptions are handled, this assertion should be made last in the test
method, as any code within that unit test method that should be executed after
the exception is thrown will be ignored. Another approach to avoid this limitation
is to use a try-catch block, and manually issue a call to the fail() or pass()
method as a result.

Chapter 10

291

There are other assertion methods that are useful in other scenarios, such as:

ff assertIsA(): Asserts that the first argument is an object of the type provided in
the second argument.

ff assertNull(): Asserts that the provided argument is null.

ff assertPattern(): Asserts that the second argument matches the regular
expression pattern defined in the first argument.

ff assertTags(): Asserts that the first argument matches the HTML tags provided in
the second argument, without consideration to the order of tag attributes. See recipe
Testing views for an example use of this assertion method.

There's more...
This recipe has shown us how to easily create fixtures. However, when there are lots of
models in our application this can become quite a tedious task. Fortunately, CakePHP's
bake command offers a task to automatically create fixtures: fixture.

It can run in interactive mode where its questions guide us through the steps required, or
by using command line parameters. If we wanted to create a fixture for our Article model
with up to two records, we would do:

On a GNU Linux / Mac / Unix system:

../cake/console/cake bake fixture article -count 2

On Microsoft Windows:

..\cake\console\cake.bat fixture article -count 2

This would generate the article_fixture.php file in its correct location, with two sample
records ready to be used.

Extending models to avoid testing unneeded bindings
In this recipe, we tested code that affects the Article and Vote models, but none of the
functionality that was covered by these unit tests had to interact with the User model. Why did
we then need to add the user fixture? Simply removing this fixture from the fixtures property
will make CakePHP complain about a missing table (specifically, test_suite_users).

To avoid creating fixtures for models we are not testing, we can create modified versions of
our model classes by extending them and re-defining their bindings, leaving in only those we
intend to test. Let us modify our test case to avoid using the user fixture.

Add the following to the beginning of your app/tests/cases/models/article.test.
php file:

App::import('Model', array('Article', 'Vote'));

Testing

292

class TestArticle extends Article {
 public $belongsTo = array();
 public $hasOne = array();
 public $hasMany = array(
 'Vote' => array('className' => 'TestVote')
);
 public $hasAndBelongsToMany = array();
 public $alias = 'Article';
 public $useTable = 'articles';
 public $useDbConfig = 'test_suite';
}

class TestVote extends Vote {
 public $belongsTo = array();
 public $hasOne = array();
 public $hasMany = array();
 public $hasAndBelongsToMany = array();
 public $alias = 'Vote';
 public $useTable = 'votes';
 public $useDbConfig = 'test_suite';
}

While still editing the article.test.php file, change the fixtures property of the
ArticleTestCase class so that the user fixture is no longer loaded:

public $fixtures = array('app.article', 'app.vote');

Finally, change the instantiation of the Article model so that it uses TestArticle instead,
by making the following changes to the startTest() method of the ArticleTestCase
class:

public function startTest($method)
{
 parent::startTest($method);
 $this->Article = ClassRegistry::init('TestArticle');
}

Analyzing code coverage
If you have Xdebug installed (information about it is available at http://xdebug.org) you
can find out how much of your application code is covered by your unit tests. This information
is a great tool for understanding which parts of your application need more testing.

Chapter 10

293

Once you have run a test case, you will notice a link entitled Analyze Code Coverage. After
running our test case, click on this link. CakePHP will inform us that we have fully covered
(100% coverage) our code. If you now comment out the unit test method called testVote(),
and then run the code coverage analysis, you will notice that this number drops to 47.62%,
and CakePHP also shows us which part of our code has not been covered by unit tests, as
shown in the next screenshot:

When you achieve 100% code coverage, you are not guaranteeing that your code is bug-free,
but that all lines of your application code have been reached by at least one unit test.

The more code left out of the reach of unit tests, the more prone to bugs your application
becomes.

See also
ff Testing controller actions and their views

Testing

294

Testing controller actions and their views
In this recipe, we will learn how to test controller actions and ensure that their views produce
the result we expect.

Getting ready
To go through this recipe we need a basic application skeleton to work with, and have the
SimpleTest library installed. Go through the entire recipe Setting up the test framework.

We also need test data. Go through the creation of fixtures described in the recipe Creating
fixtures and testing model methods.

How to do it...
Create a file named articles_controller.test.php and place it in your app/tests/
cases/controllers folder, with the following contents:

<?php
class ArticlesControllerTestCase extends CakeTestCase {
 public $fixtures = array('app.article', 'app.user', 'app.vote');

 public function testView() {

 $result = $this->testAction('/articles/view/1',
array('return'=>'vars'));
 $expected = array(
 'Article' => array(
 'id' => 1,
 'title' => 'Article 1',
 'body' => 'Body for Article 1'
),
 0 => array(
 'vote' => 4.3333
)
);
 $this->assertTrue(!empty($result['article']));
 $this->assertEqual($result['article'], $expected);

 $result = $this->testAction('/articles/view/1',
array('return'=>'view'));
 $this->assertTags($result, array(
 array('h1' => array()),
 'Article 1',
 '/h1',

Chapter 10

295

 'Vote:',
 array('span' => array('id'=>'vote')),
 '4.3',
 '/span',
 array('p' => array()),
 'Body for Article 1',
 '/p'
));
 }
?>

If you now browse to http://localhost/test.php, click on the Test Cases option under
the App section in the left menu, and then click on the controllers / ArticlesController test
case, you should see our unit test succeeding, as shown in the next screenshot:

How it works...
We start by creating the test case in a class named ArticlesControllerTestCase, and
save it in its proper location (app/tests/cases/controllers), using the right filename
(articles_controller.test.php). In this class, we specify which fixtures we need to
load, which, just as it was shown in the recipe Creating fixtures and testing model methods,
consists of fixtures for all the loaded models.

Our test case includes a single unit test method: testView(), which intends to unit test
the ArticlesController::view() action. In this unit test we use the testAction()
method that is available to all test cases. This method takes two arguments:

ff url: This is either a string or an array containing the URL to the controller action we
intend to test. If it is an array, it should be in the same format as the format used by
CakePHP once a string-based URL has been parsed.

Testing

296

ff parameters: This is a set of optional parameters, which can be any of the following:

�� connection: If fixturize is set to true, it defines the connection from
where to import data.

�� data: It is the data to post to the controller.

�� fixturize: If this is set to true, then all data from the connection defined
in the connection setting will be imported into fixtures for all the used
models. Defaults to false.

ff method: This is the method to use when posting the data specified in the data
setting. Can either be get or post. Defaults to post.

ff return: This specifies the type of result that should be returned as a result of a
testAction() call. If it is set to result, which is the default, it will return whatever
the controller action returns. If it is set to vars, it will return the view variables assigned
from the action. If it is view, it will return the rendered view without the layout.
Finally, if it is set to contents, it will return the rendered view within its layout.

ff testView(): The testView() method calls the view() action with a proper
ID, and tells the testAction() method to return the view variables created in
the controller action. We make sure that this variable is set to the proper article
information. We then finalize with a call to testAction(), using the same URL,
but specifying that we want to obtain the rendered view.

To assert that the view has the proper content, we use the assertTags() method, which
offers a flexible way to check HTML tags. This method takes an array of elements, each element
being either a string that represents a static string or a closing tag if the string starts with a
forward slash, or an array, where the key is an HTML tag name, and the value is itself an
array of attributes (keys being the attribute names, and values being their respective values).

There's more...
We have seen how, by using testAction(), we can easily test our controller actions and
make assertions on either the action's return value, the view variables, or the view content.
However, we have not covered how to test actions that might redirect the user away from the
current action, or how to test for session operations. The next recipe shows how to add more
complex tests to the unit tests we have just built.

See also
ff Using mocks to test controllers

Chapter 10

297

Using mocks to test controllers
In this recipe we will learn how to extend what we have covered in the previous recipe by using
mocks, an indispensable tool for building powerful test cases.

Getting ready
To go through this recipe, we need unit tests already in place. Go through the previous recipe.

How to do it...
1.	 Edit your app/tests/cases/controllers/articles_controller.test.php

file and place the following code at the beginning, right before the declaration of the
class ArticlesControllerTestCase:
App::import('Controller', 'Articles');

class TestArticlesController extends ArticlesController {
 public $name = 'Articles';
 public $testRedirect = false;

 public function __construct() {
 parent::__construct();
 Configure::write('controllers.'.$this->name, $this);
 }

 public function beforeFilter() {
 if (isset($this->Session)) {
 App::import('Component', 'Session');
 Mock::generate('SessionComponent');
 $this->Session = new MockSessionComponent();
 }

 parent::beforeFilter();
 }

 public function redirect($url, $status = null, $exit = true) {
 $this->testRedirect = compact('url', 'status', 'exit');
 if ($exit) {
 $this->autoRender = false;
 }
 }
}

Testing

298

2.	 While still editing the articles_controller.test.php file, add the following
code at the beginning of the ArticlesControllerTestCase class, right below
the declaration of the fixtures property:
public function testAction($url, $params = array()) {
 $url = preg_replace('/^\/articles\//', '/test_articles/',
$url);
 $result = parent::testAction($url, $params);
 $this->Articles = Configure::read('controllers.Articles');
 return $result;
}

3.	 Add the following code at the beginning of the testView() method:
$result = $this->testAction('/articles/view/0');
$this->assertTrue(!empty($this->Articles->testRedirect));
$this->assertEqual($this->Articles->testRedirect['url'],
array('action' => 'index'));

4.	 Finally, add the following method to the end of the ArticlesControllerTestCase
class:
public function testVote() {
 $result = $this->testAction('/articles/vote/2', array(
 'data' => array(
 'Vote' => array(
 'user_id' => 1,
 'vote' => 1
)
)
));

 $this->assertTrue(!empty($this->Articles->testRedirect));
 $this->assertEqual($this->Articles->testRedirect['url'],
array('action' => 'index'));

 $this->Articles->Session->expectOnce('setFlash', array('Vote
placed'));

 $article = $this->Articles->Article->get(2);
 $this->assertTrue(!empty($article) &&
!empty($article['Article']));
 $this->assertTrue(!empty($article[0]) && !empty($article[0]
['vote']));
 $this->assertEqual(number_format($article[0]['vote'], 1),
2.7);
}

Chapter 10

299

If you now browse to http://localhost/test.php, click on the Test Cases option under
the App section in the left menu, and then click on the controllers / ArticlesController test
case, you should see our unit test succeeding, as shown in the next screenshot:

How it works...
We start by extending the controller we intend to test so we can override its redirect()
method, so that when that method is executed as part of our unit test, the browser is not
redirected and we can instead use the redirect information to make our assertions.

If redirect() is called, we store the destination in a property named testRedirect, and
instead of aborting the execution (which would abort the test case) we avoid the view from
being rendered. This works properly because every time we called redirect() from our
ArticlesController class, we stopped the action execution by issuing a return statement.

As there is no direct way to get the instance of the controller that was executed from our test
case (see the section There's more in this recipe for an alternative approach), we need to
keep a reference of the controller instance. We use CakePHP's Configure class to store the
reference, so that it can then be easily obtained.

We also want to avoid using real session data as a result of our unit test. This means that
we need to find a way to let CakePHP think that when a controller interacts with its Session
component, everything behaves as expected, while still not really interacting with the browser
session. We also want to be able to assert when a particular method in that component is
executed.

Testing

300

Mocks provide a way for us to mimic the way a real object behaves, without actually
performing the object's underlying logic. With the following lines of code in the controller's
beforeFilter callback:

if (isset($this->Session)) {
 App::import('Component', 'Session');
 Mock::generate('SessionComponent');
 $this->Session = new MockSessionComponent();
}

We are replacing the instance of CakePHP's Session component with a mocked version.
This mocked version will allow the controller to use all the component's available methods
(such as setFlash()) without actually performing the underlying call. Mock::generate()
will by default generate a fully mocked object (all its underlying functionality will be ignored.)
If we wanted to mock only parts of an object, we would need to generate a partial mock. For
example, if we only wanted to mock the setFlash() method of the Session component
while still maintaining the rest of its original methods, we would do:

Mock::generatePartial('SessionComponent', false, array('setFlash'));

Once we have a mocked object and a way to access it from our unit tests, we can use any
of the following mock assertions methods to test if a method of a mocked object is called
as expected:

ff expectAtLeastOnce(): Its first argument is the name of the method we expect
to have executed, while the second optional argument is an array of parameters we
expect that method to have received. This is used when the expected method is to
be called at least once, but can still be executed more times.

ff expectNever(): Its first mandatory argument is the name of a method that we
intend to ensure has not been executed on the mocked object.

ff expectOnce(): It behaves exactly as expectAtLeastOnce(), but makes sure
the method is executed only once.

We proceed by overriding CakeTestCase's testAction() method so that whenever an
URL for the ArticlesController class is requested, we change that URL to use our
extended TestArticlesController class. Once the proper action is executed, we obtain
the instance of the controller class and keep it in a property of the unit test named Articles
so we can then refer to it.

We are now ready to test. We start by modifying the testView() method so we can test
a redirect() call, by building a test to force an invalid record ID, and asserting that the
controller's testRedirect property is set to the index action.

Chapter 10

301

We finalize the recipe by implementing the testVote() method, which gives us a chance to
test posting data (using the second argument of the testAction() method as described
in the previous recipe), and asserting that the mocked Session class receives a call to its
setFlash() method, with the right arguments.

The last part of this unit test uses the main model of our controller to fetch the created article,
and make sure that it matches our posted data.

There's more...
While the method shown in this recipe is quite powerful, it is definitely not the only way to
test controllers. We can also perform direct calls on the controller actions we intend to test
by instantiating the controller class and making a manual call to the action.

However, this is not a straightforward operation, since it would require a proper initialization
of our controller by following the same steps than those defined by CakePHP's Dispatcher
class. Mark Story has produced a thorough article describing this approach at http://
mark-story.com/posts/view/testing-cakephp-controllers-the-hard-way.

Mark Story has also published a follow-up article on manual testing of controllers, where he
introduces mocks. It is definitely a good read, and it is available at http://mark-story.
com/posts/view/testing-cakephp-controllers-mock-objects-edition.

Running tests from the command line
In this recipe, we will learn how to run our unit tests from the command line, which opens the
possibility for automated test reporting.

Getting ready
To go through this recipe we need a basic application skeleton to work with, which should
have its own set of unit tests. Go through the entire recipe Creating fixtures and testing
model methods.

How to do it...
Using your operating system console, switch to your application directory, and run:

If you are on a GNU Linux / Mac / Unix system:

../cake/console/cake testsuite app case models/article

If you are on Microsoft Windows:

..\cake\console\cake.bat testsuite app case models/article

Testing

302

The shell should now run the specified unit test and inform us that all unit tests succeeded,
as shown in the next screenshot:

How it works...
CakePHP's testsuite shell allows us to execute any test case, or group of test cases, from
the command line. It offers several ways to specify which unit test to execute by specifying a
minimum of two arguments.

The first argument can either be app, core, or a plugin name. Use app when intending to
execute a unit test, or group of tests, from your application directory. Use core if you wish to
run CakePHP's core tests. Finally, if you wish to run tests from a plugin, use the plugin name
as the first argument to the testsuite shell.

The second argument should specify what type of unit test to run. It can be set to all, which
runs all tests; group, which runs the test group specified in the third argument; or case,
which runs the test case defined in the third argument.

11
Utility Classes and

Tools

In this chapter, we will cover:

ff Working with the Set class

ff Manipulating strings with the String class

ff Sending an e-mail

ff Detecting file types with MagicDb

ff Throwing and handling exceptions

Introduction
This chapter introduces a set of utility classes and helpful techniques that improve the
architecture of a CakePHP application.

The first recipe shows how to work with a CakePHP class that optimizes the manipulation of
arrays. The second recipe shows how to manipulate strings with CakePHP's String class.
The third recipe shows how to send an email using the Email component. The fourth recipe
shows how to use the MagicDb class to detect the type of a file.

Working with the Set class
One of the most debated decisions CakePHP has ever made was returning arrays as a result
of a model find operation. While ORM purists may argue that each returned item should
be an instance of a model class, arrays prove themselves very useful, fast, and flexible for
manipulating characteristics that can be impossible to achieve with a pure object approach.

Utility Classes and Tools

304

The Set class was introduced to give the developer even more power when dealing with array
based data structures. With a simple method call, we can manipulate an array with ease,
avoiding us the pain of having to build long and complex code blocks.

This recipe shows how to use some of the most useful methods this class provides, while
introducing other available methods that may be useful under different scenarios.

Getting ready
To go through this recipe, we need some data to work with. Create the following tables, and
populate them with data, by issuing these SQL statements:

CREATE TABLE `students`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

CREATE TABLE `categories`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`)
);

CREATE TABLE `exams`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `category_id` INT UNSIGNED NOT NULL,
 `name` VARCHAR(255) NOT NULL,
 PRIMARY KEY(`id`),
 FOREIGN KEY `exams__categories`(`category_id`) REFERENCES
`categories`(`id`)
);

CREATE TABLE `grades`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `student_id` INT UNSIGNED NOT NULL,
 `exam_id` INT UNSIGNED NOT NULL,
 `grade` FLOAT UNSIGNED NOT NULL,
 PRIMARY KEY(`id`),
 FOREIGN KEY `grades__students`(`student_id`) REFERENCES
`students`(`id`),
 FOREIGN KEY `grades__exams`(`exam_id`) REFERENCES `exams`(`id`)
);

INSERT INTO `students`(`id`, `name`) VALUES
 (1, 'John Doe'),
 (2, 'Jane Doe');

Chapter 11

305

INSERT INTO `categories`(`id`, `name`) VALUES
 (1, 'Programming Language'),
 (2, 'Databases');

INSERT INTO `exams`(`id`, `category_id`, `name`) VALUES
 (1, 1, 'PHP 5.3'),
 (2, 1, 'C++'),
 (3, 1, 'Haskell'),
 (4, 2, 'MySQL'),
 (5, 2, 'MongoDB');

INSERT INTO `grades`(`student_id`, `exam_id`, `grade`) VALUES
 (1, 1, 10),
 (1, 2, 8),
 (1, 3, 7.5),
 (1, 4, 9),
 (1, 5, 6),
 (2, 1, 7),
 (2, 2, 9.5),

 (2, 3, 6),
 (2, 4, 10),
 (2, 5, 9);

Create a controller in a file named exams_controller.php and place it in your
app/controllers folder, with the following contents:

<?php
class ExamsController extends AppController {
 public function index() {
 }
}
?>

Create a file named exam.php and place it in your app/models folder, with the following
contents:

<?php
class Exam extends AppModel {
 public $belongsTo = array('Category');
 public $hasMany = array('Grade');
}
?>

Utility Classes and Tools

306

 Create a file named grade.php and place it in your app/models folder, with the following
contents:

<?php
class Grade extends AppModel {
 public $belongsTo = array(
 'Exam',
 'Student'
);
}
?>

How to do it...
1.	 Edit your app/controllers/exams_controller.php file and insert the following

contents in its index() method:
$gradeValues = Set::extract(
 $this->Exam->find('all'),
 '/Grade/grade'
);
$average = array_sum($gradeValues) / count($gradeValues);

$categories = $this->Exam->Category->find('all');
$mappedCategories = Set::combine(
 $categories,
 '/Category/id',
 '/Category/name'
);

$gradeRows = $this->Exam->Grade->find('all', array(
 'recursive' => 2
));

$grades = Set::format(
 $gradeRows,
 '%s got a %-.1f in %s (%s)',
 array(
 '/Student/name',
 '/Grade/grade',
 '/Exam/name',
 '/Exam/Category/name'
)
);

$categories = Set::map($categories);

$this->set(compact('average', 'grades', 'categories'));

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 11

307

2.	 Create a folder named exams and place it in your app/views folder. Create a
file named index.ctp and place it in your app/views/exams folder, with the
following contents:
<h2>Average: <?php echo $average; ?></h2>

<?php foreach($grades as $string) { ?>
 <?php echo $string; ?>
<?php } ?>

<h2>Categories:</h2>

<?php foreach($categories as $category) { ?>
 <?php echo $category->id; ?>: <?php echo $category->name;
?>
<?php } ?>

If you now browse to http://localhost/exams, you should see the average grade for all
exams, a detailed list of what each student got on each exam, and the list of all categories, as
shown in the following screenshot:

Utility Classes and Tools

308

How it works...
We start by using the Set::extract() method to extract information out of the result
obtained after fetching all rows from the Exam model. The information we are interested in
retrieving is the list of all grades. The extract() method takes up to three arguments:

ff path: An X-Path 2.0-compatible expression that shows the path to the information
that should be extracted.

The Set class supports only a subset of the X-Path 2.0
specification. Expressions such as //, which are valid in X-Path,
are not available in Set. Continue reading this recipe to learn
what expressions are supported.

ff data: The array data structure from which to extract the information.

ff options: These are optional settings. At the time of this writing, only the option
flatten (a boolean) is available. Setting it to false will return the extracted field
as part of the resulting structure. Defaults to true.

The path argument offers a flexible approach when defining what information we are
interested in. To further understand its syntax, consider the data structure that results from
fetching all Exam records, together with their Category information, and all associated
Grade records:

$data = $this->Exam->find('all');

In X-Path 2.0, the path is an expression separated by the forward slash (/), while each part in
that expression represents a subpath (CakePHP's Set::extract() method also enforces
a starting slash.) Therefore, the expression /children refers to a path that includes only
elements named children, while the expression /children/grandchildren will select
items named grandchildren that are descendents of items named children. When we
refer to the name of an item, we are referring to the key in the array structure.

More information about X-Path 2.0 can be obtained at
http://www.w3.org/TR/xpath20.

If we intended to grab only the Exam fields (thus discarding the information regarding
Category and Grade), we would use the following:

Set::extract('/Exam', $data);

Chapter 11

309

This would return an array of elements, each element indexed by Exam, and having as its
value all the fields for the Exam key. If we were only interested in the name field, we would
add another subpath to the expression:

Set::extract('/Exam/name', $data);

We can also further limit a path by adding conditional expressions. A conditional expression
filters the elements (using the Set::matches() method), by applying one of the typical
comparison operators (<, <=, >, >=, =, !=) to each element that matches the path. To obtain
all Grade records where the value of the grade field is less than 8, we would use the
following expression (notice how the conditional expression is applied to a subpath and is
surrounded with brackets):

Set::extract('/Grade[grade<8]', $data);

Instead of a comparison operator, we can use position expressions, which can be any of
the following:

ff :first: Refers to the first matching element.

ff :last: Refers to the last matching element.

ff number: Refers to the element located in the position indicated by number,
where number is a number greater than or equal to 1.

ff start:end: Refers to all elements starting at position start, and ending at
position end. Both start and end are numbers greater than, or equal to, 1.

To filter the data set so that only the second and third elements of all Grade records
are returned, using the subset of records where grade is greater than or equal to 8,
and obtaining only the value for the grade field, we would do:

Set::extract('/Grade[grade>=8]/grade[2:3]', $data);

Going back to the recipe, we started by extracting only the value of the grade field for each
Grade record. This Set::extract() call returns an array of grade values, so we can then
use PHP's array_sum() and count() functions to calculate the average grading.

A handful of examples of the Set::extract() method, and other Set
methods, can be obtained from its test case. Look into your CakePHP core
folder for the tests/cases/libs/set.test.php file and go through the
different test cases.

We then use the Set::combine() method. This method takes up to four arguments:

ff data: The array data structure on which to operate.

ff path1: The X-Path 2.0 path used to fetch the keys of the resulting array.

Utility Classes and Tools

310

ff path2: The X-Path 2.0 path used to fetch the values of the resulting array. If not
specified, the values will be set to null.

ff groupPath: The X-Path 2.0 path to use when looking to group the resulting items
so each item is a subitem of the corresponding group.

Using the /Category/id expression as keys and /Category/name as values, we obtain
an indexed array, where the keys are the Category IDs, and the values their respective
Category names.

The groupPath argument can serve useful in many scenarios. Consider the need of
obtaining the grades for all exams for a particular student, grouped by the category of the
exam. Using the following:

$records = $this->Exam->Grade->find('all', array(
 'conditions' => array('Student.id' => 1),
 'recursive' => 2
));
$data = Set::combine(
 $records,
 '/Exam/name',
 '/Grade/grade',
 '/Exam/Category/name'
);

We would obtain what we need in an easy to navigate array:

array(
 'Programming Language' => array(
 'PHP 5.3' => '10',
 'C++' => '8',
 'Haskell' => '7.5'
),
 'Databases' => array(
 'MySQL' => '9',
 'MongoDB' => '6'
)
)

The recipe continues by fetching all grades, and then using the Set::format() method to
obtain a list of formatted strings. This method takes three arguments:

ff data: The data to format.

ff format: The sprintf()-based string that contains the format to use.

ff keys: The array of X-Path 2.0 paths to use when replacing the sprintf()
conversion specifications included in format.

Chapter 11

311

To learn more about the sprintf() based conversion specifications see
http://php.net/sprintf.

Set::format() applies the format string to each item in the data array, and returns an
array of formatted strings. In the recipe we used the string %s got a %-.1f in %s (%s).
This string contains four conversion specifications: a string, a floating number (which we are
forcing to only include one decimal digit), and two other strings. This means that our keys
argument should contain four paths. Each of those paths will be used, in sequence to replace
their corresponding conversion specification.

The recipe ends by using the Set::map() method, which can be useful if you want to deal
with objects, rather than arrays. This method takes two optional arguments:

ff class: The class name to be used when creating an instance of an object. This
argument is normally used to specify the data, and the tmp argument is used to
specify the class name.

ff tmp: If the first argument is an array, then this argument behaves as the class
argument. Otherwise it is safely ignored.

Simply calling this method with the data to convert will convert that data to a set of generic
object instances, recursively. If the class argument is used, then the class name specified
in that argument will be used when creating the respective object instances.

There's more...
The usefulness of the Set class does not end here. There are several other methods that
were not covered in this recipe, but can help us when developing our CakePHP applications.
Some of these methods are:

ff merge(): Acts as a combination of two PHP methods: array_merge() and
array_merge_recursive(), allowing the proper merging of arrays when the
same key exists in at least two of the arguments, and they are themselves arrays.
In this case, it performs another Set::merge() on those elements.

ff filter(): Filter empty elements out of an array, leaving in real values that evaluate
to empty (0, and '0')

ff pushDiff(): Pushes the differences from one array to another, inserting the
nonexistent keys from the second argument to the first, recursively.

ff numeric(): Determines if the elements in the array contain only numeric values.

Utility Classes and Tools

312

ff diff(): Computes and returns the different elements between two arrays.

ff reverse(): Converts an object into an array. This method can be seen as the
opposite of the Set::map() method.

ff sort(): Sorts an array by the value specified in an X-Path 2.0 compatible path.

Manipulating strings with the String class
String manipulation is probably one of PHP's biggest strengths, as it offers a handful of
functions to perform a variety of operations. Even when almost every need can be fulfilled by
using PHP's core methods, some forms of string manipulation may prove troublesome.

To find out more about some of PHP's core string methods see http://
php.net/manual/en/ref.strings.php.

CakePHP offers a utility class named String to help us deal with strings. This recipe
introduces the class and its few, yet useful set of methods.

Getting ready
We need a controller to use as placeholder for our code. Create a file named examples_
controller.php and place it in your app/controllers folder, with the following contents:

<?php
class ExamplesController extends AppController {
 public $uses = null;
 public function index() {
 $this->_stop();
 }
?>

How to do it...
Edit the app/controllers/examples_controller.php file and add the following at the
beginning of the index() method:

$lines = array(
 '"Doe, Jane", jane.doe@email.com',
 '"Doe, John", john.doe@email.com'
);
foreach($lines as $i => $line) {
 $line = String::tokenize($line, ',', '"', '"');

Chapter 11

313

 $line = array_combine(array('name', 'email'), $line);
 foreach($line as $field => $value) {
 $line[$field] = preg_replace('/^"(.+)"$/', '\\1', $value);
 }
 $line['id'] = String::uuid();
 $lines[$i] = $line;
}

foreach($lines as $line) {
 echo String::insert('[:id] Hello :name! Your email is\\: :email',
$line) . '
';
}

If you now browse to http://localhost/examples you should see a text output similar to
the following:

[4d403ee1-6bbc-48c6-a8cc-786894a56bba] Hello Doe, Jane! Your email is: jane.doe@
email.com

[4d403ee1-9e84-487f-95cf-786894a56bba] Hello Doe, John! Your email is: john.doe@
email.com

How it works...
The String class offers the following methods for string manipulation:

ff cleanInsert(): Cleans a string generated via the String::insert() method.

ff insert(): Replaces variable placeholders in a string with a set of values.

ff tokenize(): Separates a string into parts using a given separator, and ignoring the
separator instances that appear between the specified bound strings.

ff uuid(): Returns a random UUID string.

This recipe starts by defining an array of two strings, each of them following a format similar
to what we would find on a CSV (comma-separated values) file. For each of those lines, we use
the String::tokenize() method to separate the CSV line into a set of values. This method
takes up to four arguments:

ff data: The string to separate.

ff separator: The token that separates the string. Defaults to ,.

ff leftBound: The boundary string that indicates the start of an area where
separator characters should be ignored. Defaults to (.

ff rightBound: Similar to leftBound, but marks the end of that area. Defaults to).

Utility Classes and Tools

314

We tell String::tokenize() to separate each line taking into account that any expression
enclosed between quotes can include the separator character, in which case it should be
ignored. We then use PHP's array_combine() function so that each line becomes an
associative array, indexed by field name and having as its values the corresponding field value.

As the string returned by the String::tokenize() method includes the boundary strings
defined in the leftBound and rightBound arguments if they were part of the original
string, we proceed to remove them from each line.

We then add a random UUID string as the value for each line's id field, using the
String::uuid() method. This string will be unique to each line, and should never
repeat itself, even across separate requests.

More information about UUIDs can be obtained at http://
en.wikipedia.org/wiki/Universally_unique_identifier.

Finally, we go through each line and output a dynamically generated string through the
String::insert() method. This method takes up to three arguments:

ff str: String that contains the variable placeholders that should be replaced.

ff data: Associative array in the form variable => value, used to replace
the variable placeholders with their respective value.

ff options: Set of options to define how the method should behave. Available options:

�� before: String that indicates the start of a variable placeholder. Defaults to :.

�� after: String that indicates the end of a variable placeholder. Defaults to
null, which means a placeholder starts with the string defined in before,
and end where the word ends.

ff escape: Character to use when looking to escape the string used in the before
option. Defaults to \.

ff format: Regular expression used to find variable placeholders.

ff clean: If specified, it will clean the replaced string through the
String::cleanInsert() method. Defaults to false, which means no cleaning
is done.

In our example, we use the string [:id] Hello :name! Your email is\\: :email.
This string contains three variable placeholders: :id, :name, and :email. Each of those
get replaced by the respective value in the associative array that is passed as the second
argument to the String::insert() method.

http://en.wikipedia.org/wiki/Universally_unique_identifier

Chapter 11

315

Sending an e-mail
If there is one task we can hardly avoid when building web applications it is sending out
e-mails. It is such a basic need that CakePHP provides us with a ready-to-go component
that can send e-mails, either through SMTP, or using PHP's mail() function.

In this recipe we will learn how to use the Email component to send out e-mails through SMTP
using a Google Mail account, and how to use e-mail layouts to proper render the e-mails.

Getting ready
We only need some place to put our code, and that place will be a model-less controller.
Create a file named emails_controller.php and place it in your app/controllers
folder, with the following contents:

class EmailsController extends AppController {
 public $uses = null;
 public function index() {
 $this->_stop();
 }
}

How to do it...
1.	 Edit your app/controllers/emails_controller.php and add the following

property to the EmailsController class (right below the uses property
declaration), replacing the username and password settings highlighted with your
Google Mail account, and password:
public $components = array(
 'Email' => array(
 'delivery' => 'smtp',
 'smtpOptions' => array(
 'host' => 'ssl://smtp.gmail.com',
 'port' => 465,
 'username' => 'email@gmail.com',
 'password' => 'password'
)
)
);

Utility Classes and Tools

316

2.	 While still editing the controller, add the following code to its index() method, right
above the call to the _stop() method (replace the to property highlighted with the
e-mail address where you wish to receive the test e-mail):
$this->Email->to = 'Destination <email@gmail.com>';
$this->Email->subject = 'Testing the Email component';
$sent = $this->Email->send('Hello world!');
if (!$sent) {
 echo 'ERROR: ' . $this->Email->smtpError . '
';
} else {
 echo 'Email sent!';
}

3.	 If you now browse to http://localhost/emails, you should see the message
Email sent!, and you should then receive the test e-mail message in your inbox, as
shown in the following screenshot:

Let us now continue by sending an HTML e-mail, using layouts and templates.

4.	 Make the following changes to the index() method in your app/controllers/
emails_controller.php file (remember to change the highlighted to property to
your desired destination e-mail):

Chapter 11

317

$this->set(array(
 'name' => 'Mariano Iglesias',
 'url' => Router::url('/', true)
));
$this->Email->to = 'Destination <email@gmail.com>';
$this->Email->subject = 'Testing the Email component';
$this->Email->sendAs = 'both';
$this->Email->template = 'test';
$sent = $this->Email->send();
if (!$sent) {
 echo 'ERROR: ' . $this->Email->smtpError . '
';
} else {
 echo 'Email sent!';
}

5.	 Create a file named default.ctp and place it in your app/views/layouts/
email/html folder with the following contents:
<html>
<head><title><?php echo $title_for_layout;?></title></head>
<body>
 <?php echo $content_for_layout; ?>
 <p><small>This email was sent on: <?php echo date('F d, Y
H:i'); ?></small></p>
</body>
</html>

6.	 Create a file named default.ctp and place it in your app/views/layouts/
email/text folder with the following contents:
<?php echo $content_for_layout; ?>
This email was sent on: <?php echo date('F d, Y H:i'); ?>

7.	 Create a file named test.ctp and place it in your app/views/elements/email/
html folder, with the following contents:
<p>Hello <?php echo $name; ?>!</p>
<p>This is a test email from <?php echo $this->Html->link('My Test
Application', $url); ?></p>

8.	 Create a file named test.ctp and place it in your app/views/elements/email/
text folder, with the following contents:
Hello <?php echo $name; ?>!

This is a test email from My Test Application: <?php echo $url; ?>

Utility Classes and Tools

318

If you now browse to http://localhost/emails you should see the message Email sent!,
and you should then receive the test e-mail message in your inbox in HTML format, and with a
link to your web application.

How it works...
We start by adding the Email component to our controller's list of components. While adding
it, we set the settings required to specify the type of delivery we wish to use. The connection
settings available in the Email component are:

ff delivery: It is the type of delivery to use, and can be either: mail (uses PHP's
mail() function), smtp (uses SMTP, and requires proper configuration of the
smtpOptions setting), and debug (which tells the Email component to avoid
sending the e-mail, and instead create a session flash message with the message
contents.)

ff smtpOptions: If delivery is set to smtp, it defines an array of settings to specify
the type of SMTP connection to attempt. Available settings for this setting are:

�� protocol: Protocol to use when connecting. Defaults to smtp.

�� host: SMTP host to connect to. Defaults to localhost.

�� port: Port to use when connecting to host. Defaults to 25.

�� username: Username.

�� password: Password to use.

�� client: What is the client connecting to the SMTP server. Defaults to the
HTTP_HOST environment variable.

�� timeout: How many seconds to wait until the attempt to reach the server
times out. Defaults to 30.

We set delivery to smtp, and set the smtpOptions to what is required when attempting to
send e-mails through Google Mail's SMTP server. Once the Email component is added to the
controller and properly configured, we are ready to build and send e-mails.

The controller's index() method builds the e-mail by setting some properties. The Email
component takes most of its configuration through public properties, some of which are:

ff to: Destination, in the form: name <email>, where email is a valid e-mail address.
It can also simply be an email address.

ff from: E-mail address that is sending the e-mail. This property uses the same format
as the to property. Notice that if you use Google Mail's SMTP, only the name part of
this setting will be used (as the e-mail address will be set to your Google Mail e-mail
address.)

ff replyTo: Email address to which responses should be sent to. Same format as the
to property.

Chapter 11

319

ff return: E-mail address to send any delivery errors, sent by the remote mail server.
Same format as the to property.

ff readReceipt: An e-mail address (using the same format as the to property) to
where to send read receipt e-mails. Defaults to none.

ff cc: An array containing the e-mail address to where to send copies of this e-mail.
Each e-mail address should be specified using the same format as the to property.

ff bcc: An array containing e-mail address to send blind copies of this e-mail. Each
e-mail address should be specified using the same format as the to property.

ff subject: Subject for the e-mail.

ff headers: An array containing additional headers to send with the e-mail; each of
those headers will be prefixed with X- as per RFC 2822.

ff attachments: An array if paths to files that should be attached to the e-mail.

Using the to and subject property we specify the destination and subject of the e-mail. We
did not have to define the from property since Google Mail uses the account specified when
connecting to the SMTP server.

We then issue a call to the send() method, passing the body of the e-mail as its argument,
and based on its boolean response we inform if the e-mail was successfully sent or if it failed,
in which case we use the smtpError property to show the error.

The next part of the recipe uses templates and layouts to properly build the e-mail in two
formats: HTML, and text, and uses replacement variables to show the flexibility of the e-mail
component. E-mail layouts and templates are no different than controller layouts and views,
as they inherit the controller properties (such as its replacement variables, and available
helpers.)

E-mail layouts wrap the contents of e-mail templates, by means of their content_for_
layout variable, just as controllers layouts do. There are two types of email layouts: HTML
layouts, stored in app/views/layouts/email/html, and text layouts, stored in app/
views/layouts/email/text. Similarly, you can define templates for HTML emails by
storing them in the folder app/views/elements/emails/html, and text email templates
in app/views/elements/emails/text.

We set the layout of the e-mail through the layout property of the Email component. If no
layout is set, the default is used. Therefore, we start by creating the HTML layout in the file
app/views/layouts/email/html/default.ctp, and the text layout in app/views/
layouts/email/text/default.ctp.

We create two versions of the same template, called test: its HTML version is stored in
app/views/elements/email/html/test.ctp, and its text version in app/views/
elements/email/html/test.ctp.

Utility Classes and Tools

320

The recipe continues by modifying the index() action. We start by defining two replacement
variables: name and url, which are used in the test template. We then use the sendAs
property of the Email component to say we are sending an HTML and text friendly e-mail.
This property can be set to: html, to send HTML only e-mails; text, to send text only e-mails;
and both, to send emails that support HTML and text e-mail clients.

We use the template property of the Email component to specify that we wish to use our
test template, and we finalize with a call to the send() method to send out the e-mail.

There's more...
A common mistake that web application developers make is sending out e-mails as part
of a controller action that is triggered by the visitor. Strictly speaking, e-mail sending is a
non-interactive task, and as such should not be tied to the user browsing experience.

It is therefore recommended that the email sending task be performed in a non-interactive
manner, which in CakePHP terms means from the console, also known as shell.

To exemplify this solution, consider a subscription website, where users enter their information
(including their e-mail address), and, as a result, the application sends out a confirmation
e-mail. Instead of sending the e-mail as part of the controller action that is triggered from the
submission form, we may set a database field that shows that those users have not yet been
sent out the confirmation e-mail, and then have a CakePHP shell periodically check for users
that need their confirmation e-mails, sending out those e-mails from the shell.

This means that we find ourselves needing to be able to send e-mails from the shell, a topic
covered in the recipe Sending e-mails from shells in Chapter 8, Working with Shells.

See also

Sending e-mails from shells in Chapter 8, Working with Shells.

Detecting file types with MagicDb
When handling file uploads, it is often important to determine the type of file being uploaded.
While some files may be easily recognizable based on their contents, others may prove to be
hard to identify.

MagicDb is a file database that consists of specifications for several file formats. This recipe
shows us how to use this database, through CakePHP's MagicDb class, to properly identify
files uploaded by our users.

The license for the MagicDb database file allows its use only on open source or freely
available software. If you wish to identify files on commercial applications, you will have
to find a different approach.

Chapter 11

321

Getting ready
As we will be working on files uploaded by our users, we need to build a form to upload files.
We will store these uploads in a table, so create this table with the following SQL statement:

CREATE TABLE `uploads`(
 `id` INT UNSIGNED AUTO_INCREMENT NOT NULL,
 `file` VARCHAR(255) NOT NULL,
 `mime` VARCHAR(255) default NULL,
 `description` TEXT default NULL,
 PRIMARY KEY(`id`)
);

Create a file named uploads_controller.php and place it in your app/controllers
folder, with the following contents:

class UploadsController extends AppController {
 public function add() {
 if (!empty($this->data)) {
 $this->Upload->create();
 if ($this->Upload->save($this->data)) {
 $this->Session->setFlash('File succesfully uploaded');
 $this->redirect(array('action'=>'view', $this->Upload-
>id));
 } else {
 $this->Session->setFlash('Please correct the errors marked
below');
 }
 }
 }
}

Create a folder named uploads in your app/views folder. Create the view for the add()
method in a file named add.ctp and place it in your app/views/uploads folder, with the
following contents:

<?php
echo $this->Form->create('Upload', array('type'=>'file'));
echo $this->Form->inputs(array(
 'file' => array('type'=>'file')
));
echo $this->Form->end('Upload');
?>

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Utility Classes and Tools

322

How to do it...
1.	 Download the latest MagicDb database file from http://www.magicdb.org/

magic.db and place it in your app/vendors folder. You should now have a file
named magic.db in your app/vendors folder.

2.	 Edit your app/controllers/uploads_controller.php file and add the
following methods right below the add() method:
public function view($id) {
 $upload = $this->Upload->find('first', array(
 'conditions' => array('Upload.id' => $id)
));
 if (empty($upload)) {
 $this->cakeError('error404');
 }
 $this->set(compact('upload'));
}

public function download($id) {
 $upload = $this->Upload->find('first', array(
 'conditions' => array('Upload.id' => $id)
));
 if (empty($upload)) {
 $this->cakeError('error404');
 }
 $path = TMP . $upload['Upload']['file'];

 header('Content-type: '.$upload['Upload']['mime']);
 readfile($path);
 $this->_stop();
}

3.	 Create the view for the view() method in a file named view.ctp and place it in
your app/views/uploads folder with the following contents:
<h2><?php echo $upload['Upload']['file']; ?></h2>
<p>
File: <?php echo $upload['Upload']['file']; ?>

MIME Type: <?php echo $upload['Upload']['mime'];
?>

Description: <?php echo $upload['Upload']
['description']; ?>
</p>

<p>
<?php if (strpos($upload['Upload']['mime'], 'image/') === 0) { ?>

Chapter 11

323

 <?php echo $this->Html->image(array('action'=>'download',
$upload['Upload']['id']), array('height'=>200)); ?>
<?php } else { ?>
 <?php echo $this->Html->link('Download',
array('action'=>'download', $upload['Upload']['id'])); ?>
<?php } ?>
</p>

4.	 Create the model in a file named upload.php and place it in your app/models
folder with the following contents:
<?php
class Upload extends AppModel {
 protected $magicDb;
 protected function getMagicDb() {
 if (!isset($this->magicDb)) {
 App::import('Core', 'MagicDb');
 $magicDb = new MagicDb();
 if (!$magicDb->read(APP . 'vendors' . DS . 'magic.db')) {
 return null;
 }
 $this->magicDb = $magicDb;
 }
 return $this->magicDb;
 }
}
?>

5.	 While still editing your app/models/upload.php file, add the following method to
the Upload class:
public function beforeValidate($options = array()) {
 $result = parent::beforeValidate($options);

 $data = $this->data[$this->alias];
 if (!empty($data['file'])) {
 if (
 empty($data['file']) ||
 !is_array($data['file']) ||
 empty($data['file']['tmp_name']) ||
 !is_uploaded_file($data['file']['tmp_name'])
) {
 $this->invalidate('file', 'No file uploaded');
 return false;
 }

 $magicDb = $this->getMagicDb();
 if (!isset($magicDb)) {

Utility Classes and Tools

324

 $this->invalidate('file', 'Can\'t get instance of MagicDb');
 return false;
 }

 $path = TMP . $data['file']['name'];
 if (!move_uploaded_file($data['file']['tmp_name'], $path)) {
 $this->invalidate('file', 'Could not move uploaded
file');
 return false;
 }

 $data['file'] = basename($path);
 unset($data['mime']);

 $analysis = $magicDb->analyze($path);
 if (!empty($analysis)) {
 $analysis = $analysis[0];
 if (preg_match('/^\[.+?;ext=[^;]+;mime=([^;]+);.*?\]
(.*)$/i', $analysis[3], $match)) {
 $data['mime'] = $match[1];
 if (empty($data['description'])) {
 $data['description'] = $match[2];
 }
 }
 }

 if (empty($data['mime'])) {
 $this->invalidate('Can\'t recognize file
'.$data['file']);
 return false;
 }

 $this->data[$this->alias] = $data;
 } else {
 $this->invalidate('file', 'This field is required');
 return false;
 }

 return $result;
}

If you now browse to http://localhost/uploads/add, you will see a form where you can
select a file, and then click the button Upload. Doing so with a GIF image will produce a result
similar to what shown in the following screenshot:

Chapter 11

325

How it works...
The recipe starts by downloading the MagicDb file and placing it into the app/vendors
directory. This file is a text file; containing blocks of identifier file signatures, and for each
of these file signature definitions, their respective mime type, and description.

Next, we create the view() and download() controller actions. Both of them are very
similar, except that the download() action uses the field mime to set the Content-type
header, thus properly informing the client browser the type of data being sent.

The download() action simply sends the contents of the file by using PHP's readfile()
function, then calling the _stop() method (available to all CakePHP classes that descend
from Object) to stop execution. The view() action, on the other hand, requires a view,
which prints out the Upload record information, showing an image if the file is indeed an
image, or showing a link to download the file, in any other case.

The Upload model defines two methods: beforeValidate(), and getMagicDb(). The
second method creates an instance of the MagicDb class provided by CakePHP, populating
it with the contents from the magic.db file that was saved in the app/vendors directory.

The validation callback beforeValidate() starts by making sure that a proper file was
uploaded. If so, it moves the uploaded file to the application's temporary directory, and then
uses the analyze() method of the MagicDb class to obtain the file information.

Utility Classes and Tools

326

This method will return an empty array if the file was not identified, or a set of file
identifications that match the file. These file identifications are themselves arrays, containing
information that is defined in the magic.db file. The fourth element out of this array contains
the information we are looking for: a string that includes the file extension, the mime type, and
the file type description.

We extract this information, and we set it so it is saved together with the filename. If the file
was not identified, we invalidate the file field.

Throwing and handling exceptions
CakePHP 1.3 still offers support for PHP4, yet most CakePHP applications are built exclusively
for PHP5. Therefore, it is only expected that our applications use language features only
available in PHP5, such as exceptions.

However, there is no built-in support in CakePHP to handle exceptions. This recipe shows us
how to create a base exception class that can be used throughout our application, and how
to properly recover the application workflow after an exception is thrown.

Getting ready
We need a basic application skeleton to work with. Follow the entire recipe Detecting file types
with MagicDb.

How to do it...
1.	 Edit your app/controllers/uploads_controller.php file and change the

view() and download() methods, so that where it reads:
$this->cakeError('error404');

It now reads:
throw new AppException('Upload '.$id.' not found');

2.	 Create a file named app_exception.php and place it in your app/ folder, with
the following contents:
<?php
class AppException extends Exception {
 public function getInfo() {
 return array(
 'message' => $this->getMessage(),
 'trace' => $this->getStackTrace(),
 'url' => Router::url(null, true),
 'method' => env('REQUEST_METHOD'),

Chapter 11

327

 'referer' => env('HTTP_REFERER'),
 'POST' => $_POST,
 'GET' => $_GET,
 'SESSION' => $_SESSION
);
 }

 public function getStackTrace($array = true, $count = 5) {
 if ($array) {
 $trace = $this->getTrace();
 if (!empty($count)) {
 $trace = array_slice($trace, 0, $count);
 }
 foreach($trace as $i => $row) {
 $location = '';
 if (!empty($row['class'])) {
 $location .= $row['class'] . $row['type'] .
$row['function'] . '()';
 }
 $file = !empty($row['file']) ? str_replace(ROOT.DS,
'', $row['file']) : '';
 if (!empty($file)) {
 if (!empty($location)) {
 $location .= ' (' . $file . '@' . $row['line'] .
')';
 } else {
 $location .= $file . '@' . $row['line'];
 }
 }

 $trace[$i]['location'] = $location;
 unset($trace[$i]['args']);
 }
 return $trace;
 }
 return $this->getTraceAsString();
 }
}
?>

Utility Classes and Tools

328

3.	 Create a file named exception_handler.php and place it in your app/libs
folder, with the following contents:
<?php
App::import(array('type'=>'File', 'name'=>'AppException',
'file'=>APP.'app_exception.php'));
App::import('Core', 'Controller');

class ExceptionHandler extends Object {

 public static function handleException($exception) {
self::getInstance();
 self::logException($exception);
 self::renderException($exception);
 self::_stop();
 }
}

4.	 While still editing your app/libs/exception_handler.php file, add the following
methods to the ExceptionHandler class:
public function renderException($exception) {
 $Dispatcher = new Dispatcher();
 $Controller = new Controller();

 $Controller->params = array(
 'controller' => 'exceptions',
 'action' => 'exception'
);

 $Controller->viewPath = 'exceptions';
 if (file_exists(VIEWS.'layouts'.DS.'exception.ctp')) {
 $Controller->layout = 'exception';
 }
 $Controller->base = $Dispatcher->baseUrl();
 $Controller->webroot = $Dispatcher->webroot;
 $Controller->set(compact('exception'));

 $View = new View($Controller);
 if (!file_exists(VIEWS.'exceptions'.DS.'view.ctp')) {
 if (Configure::read('debug') > 0) {
 echo 'Exception: ';
 echo $exception->getMessage();
 echo '<pre>';
 echo $exception->getStackTrace(false);
 echo '</pre>';
 return;
 }
 return $Controller->redirect(null, 500);

Chapter 11

329

 }
 echo $View->render('view');
}

public function logException($exception) {
 $trace = $exception->getStackTrace();
 $message = get_class($exception) . ' thrown in ' . $trace[0]
['location'];
 $message .= ': ' . $exception->getMessage();
 if (is_a($exception, instanceof AppException)) {
 $message .= ' | DEBUG: ' . json_encodevar_export($exception-
>getInfo(), true); }
 self::log($message, LOG_ERROR);
}

5.	 Add the following at the end of your app/config/bootstrap.php file (right above
the closing PHP tag):
App::import('Lib', 'ExceptionHandler');
set_exception_handler(array('ExceptionHandler',
'handleException'));

6.	 Create a folder named exceptions in your app/views folder. Create a file named
view.ctp and place it in your app/views/exceptions folder, with the following
contents:
<h2><?php echo $exception->getMessage(); ?></h2>
<?php if (Configure::read('debug') > 0) { ?>

 <?php foreach($exception->getStackTrace() as $trace) { ?>
 <?php echo $trace['location']; ?>
 <?php } ?>

 <?php if (is_a($exception, 'AppException')) { ?>
 <?php debug(array_diff_key($exception->getInfo(),
array('message'=>null, 'trace'=>null))); ?>
 <?php } ?>
<?php } else { ?>
 <p>An error has been found. It has been logged, and will soon
be fixed.</p>
<?php } ?>

Utility Classes and Tools

330

If you now force an error by browsing to http://localhost/uploads/view/xx, you will
see a page describing the exception, its stack trace, and including relevant information, such
as the URL, any POST or GET parameters, and session information, as shown in the following
screenshot:

How it works...
We start by using exceptions in our UploadsController class, instead of using CakePHP's
cakeError() method, whenever an Upload record is not found. These exceptions are
actually instances of AppException, but we could have as well created custom exceptions
that inherit from AppException.

The AppException class provides us with a base class from where to extend our application
exceptions. This class offers us more contextual information through its getInfo() method.
This information includes not only the exception message and the stack trace (which is
simplified by removing the arguments, and limiting the number of items), but also the URL,
method, any POST or GET data, and session information, details that can become valuable
when working out the exception.

Chapter 11

331

We still have to add the ability to handle any exceptions that are thrown. For that purpose,
we create the ExceptionHandler class. Through the code added to the app/config/
bootstrap.php file, which uses PHP's set_exception_handler() function, we
tell PHP that whenever an exception is thrown and not caught anywhere, the static
handleException() method of the ExceptionHandler class is to be executed.

This method logs the exception, using the logException() method, and renders a friendly
page by calling the renderException() method. This rendering is performed by creating
a dummy controller as an instance of Controller, using this controller to render the view
app/views/exceptions.ctp (optionally using a layout named exception.ctp if one
is available in app/views/exceptions), and setting the view variable exception to the
exception being handled.

This view shows a simple message if the debug level is set to 0, or a thorough description of
the stack trace and any context information that may be relevant.

Index
Symbols
$tokenTimeThreshold local variable 217
_authorize() method 148
_checkArgs() method 228
_endTransaction() method 156
_execute() method 158
_findMethods property 81
_findSearch() method 81
_helpCommand() method 240
_help() method 240
_isJSON() 206
_parseCSV() method 228
_randomPassword() method 223, 225
_restLogin() method 212, 217
_startTransaction() method 156
_stop() method 223
_usageCommand() helper method 240

A
ACL

setting up, on application 27-33
add() method 225, 321
ad-hoc JOINs

using, for building queries 75, 76
afterDelete callback 110
afterFind callback 108
afterFind implementation 69
afterFind() method 67, 68, 106
AJAX based pagination

implementing 88, 90
allow() method 11
analyze() method 325

API access
token-based authorization, implementing

212-215
AppController class 13, 14
AppException class 330
AppModel class 67
args command settings

help 238
mandatory 238

array_combine() function 314
ArticleFixture 289
ArticlesController class 163, 264 299
ArticlesController::index() action 190
ArticlesControllerTestCase class 295, 298
ArticlesController::view() action 295
article_translations table

creating 272
assertEqual() method 290
assertFalse() method 290
assertion methods

assertIsA() 291
assertNull() 291
assertPattern() 291
assertTags() 291

assertIsA() method 291
assertNull() method 291
assertPattern() method 291
assertTags() method 291
assertTrue() method 290
Auth component 10, 211

configuring 12-14
using 12-14
using, for hashing passwords 223

authentication
adding, to REST services 207-211
working, in REST services 211, 212

334

authentication system
setting up 8-11

B
backAutoCommit property 156
beforeDelete callback 110
beforeFilter callback 300
beforeFilter() method 14, 208
beforeFind callback 108
beforeFind() method 68, 106
beforeSave callback 112
beforeValidate() method 325
belongsTo association 56
binding changes

resetting 49
binding conditions

modifying, for find 55
working 56

binding parameters
modifying, for find 50-53
working 54

bindings
adding 60, 62

bindings returned
limiting, after find operation 41-46

bindModel() method 54, 56
blackHole() method 212, 217
built-in validation rules

alphaNumeric 98
between 98
blank 98
boolean 98
Cc 98
comparison 98
custom 98
date 98
decimal 98
email 98
equalTo 98
extension 98
inList 98
Ip 98
maxLength 98
minLength 98
Money 98
multiple 98

numeric 98
phone 98
postal 98
range 98
ssn 98
time 98
url 98
uuid 98

C
cakeError() method 330
CakePHP

behaviors 93
built-in validation rules 98
catch-all routes, adding for profile pages 174-

176
code coverage, analyzing 292, 293
controller actions and views, testing 294, 295
controllers, testing using mocks 297-299
custom shell, building 219-222
custom shell, running 219-222
custom validation rule, creating 98-102
datasources 123
datasources plugin, installing 130
e-mail, sending using Email component

 315-317
exceptions, handling 326-330
exceptions, throwing 326-330
file types, identifying with MagicDb 320-325
find types 63
fixtures 288
fixtures, creating 284
model methods, testing 284- 288
named and GET parameters, using 160-164
OAuth support 139
reusable shell tasks, creating 229-237
reverse routing, using 173
route elements, working with 171-173
routes, using with prefixes 166-169
Set class, working with 303-305
string manipulation 312
test data, creating 284-288
test framework, setting up 279-284
unit tests, running from command line 301
validation 93

335

validation, adding for catch-all routes
 177-181

CakePHP applications
controller and view texts, internationalizing

252-257
database records, translating with Translate

behavior 269-272
internationalizing 252
language selection, remembering 274-276
language selection, setting 274-276
model validation messages, internationalizing

258-262
strings, translating with dynamic content

 262, 264
text, translating 265-269

CakePHP behaviors
about 103
callbacks, using 103-107
Geocodable behavior 117
implementing, for automatically saving data

111, 112
Sluggable behavior 113-116

CakePHP shells
about 219
command line parameters, parsing 224-227
e-mails, sending from 240-243

CakeTestCase class, callbacks
endCase() 290
endTest() 290
startCase() 290
startTest() 290

CakeTestFixture class 288
callbacks

using, behaviors 103-107
working 108

catch-all routes
adding, for profile pages 174-176
validation, adding 177-180
working 176

categories
about 258
specifying 258

ClassRegistry::init() method 289
cleanInsert() method, String class 313
close() method 148
code coverage

analyzing 292, 293

combine() method, Set class
about 309
data argument 309
groupPath argument 310
path1 argument 309
path2 argument 310

command line parameters, shells
parsing 224-227
working 228

commands property settings
args 238
help 238
params 238

components property 127
Configure::listObjects() method 180
ConnectionManager::getDataSource()

method 130
ConnectionManager::sourceList()

method 130
connection settings

changing, at runtime 138
connection settings, Email component

client 318
delivery 318
host 318
password 318
port 318
protocol 318
smtpOptions 318
timeout 318
username 318

connect() method 135, 148
Contact model 133
Containable behavior

about 40
adding, to all models 40
working 40

contain find parameter
formatting 48
working 47

contain() method 49
content

retrieving, from RSS feeds using datasource
135-137

controller actions and views
testing 294, 295

controller method 135

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

336

controllers
testing, mocks used 297-299

CSV files
dynamic loading 134, 135
parsing, datasource used 130-132

CsvSource 133
current user information

acquiring 21-23
custom find type

implementing 80-84
paginating 86-88
working 85

custom route classes
creating 181, 182
match() implementation 183
match() method 183
parse() implementation 184
parse() method 183
working 183, 184

custom shell
building 219-222
running 219-222
working 222

custom validation rule
creating 98-102

D
database records

translating, Translate behavior used 269-272
datasources

about 123
connection settings, changing at runtime 138
SQL datasource query log, improving

 123-130
using, for retrieving content from RSS feeds

135-138
datasources plugin

downloading 130
installing 130

DboMysqlTransaction class 154
default user model

changing 15
delete() method 207
describe() method 147
diff() method, Set class 312
Dispatcher class 301

displayField property 273
domains

about 257
specifying 257

download() action 325

E
Email component

about 240, 315
connection settings 318
properties 244
public properties, using 318
using 240, 315
working 243, 244

e-mail layouts 319
e-mails

sending, from shells 240-243
e-mail, sending

Email component, using 315-317
working 318

e-mail templates 319
endCase() callback 290
endTest() callback 290
error() method 223
ExceptionHandler class 331
exceptions

handling 326-330
throwing 326-330
working 330

execute() method 238, 240
expectAtLeastOnce() method 300
expectException() method 290
expectNever() method 300
expectOnce() method 300
EXPLAIN command 123
extract() method, Set class

about 308
arguments 308
data argument 308
options 308
path argument 308

extract() PHP function 239

F
fgetcsv() function 228

337

file types
identifying, MagicDb used 320-325

filter() method, Set class 311
find() method 82
find operation 66
find types, CakePHP

all 63
arguments 85
count 63
first 63
list 63
neighbors 64
threaded 64

fixture creation
avoiding, for models 291, 292

fixtures
ArticleFixture 289
creating 284-288
UserFixture 289
VoteFixture 289

flash() method 274
fopen() function 228
format() method, Set class

about 310
data argument 310
format argument 310
keys argument 310

FormHelper class 262

G
Gearman

about 244
URL 244

Geocodable behavior
about 117
using, for geocoding addresses 117-121
working 121

Geocode plugin 117
get_class_vars() method 239
getInfo() method 330
getLog() method 130
getMagicDb() method 325
GROUP and COUNT queries

performing 64-68

H
handleException() method 331
hasOne association 56
help() method 225
HelpTask class 233
HttpSocket class 101, 139, 192, 207
HttpSocket::get()

$query parameter 196
$request parameter 196
$uri parameter 196
about 196
parameters 196

HttpSocketOauth class 148

I
i18n class 257
i18n table

content 272
field 272
foreign_key field 272
locale field 272
model field 272

import() method 228
index() method 66, 134
index() method, Set class 306
initialize() method 238
INNER JOIN, JOIN types 57
inputs method 11
insert() method, String class

about 313
after argument 314
before argument 314
clean argument 314
data argument 314
escape argument 314
format argument 314
options argument 314
str argument 314

isAuthorized method 11
isAuthorized() method 14
isInterfaceSupported() method 130

338

J
JavaScript Object Notation. See JSON
JOIN CakePHP 57
JOIN type

changing 56, 57
JOIN types

INNER JOIN 57
LEFT JOIN 57
RIGHT JOIN 57

JSON 192
json_decode() function 148, 196
JSON service

consuming 192-195
working 195, 196

K
keys argument, Set::format() method 310

L
language selection, CakePHP applications

remembering 274-276
setting 274-276

last_tweet field 112
LEFT JOIN, JOIN types 57
listSources() method 135, 147
lockLog() method 158
lock() method 157
lockTimeoutErrorCode property 156
logException() method 331
login() action 11
login() method 10, 212
loginOptions property 211
logins

allowing, with username or e-mail 16-18
logout() controller 11
logout() method 20

M
MagicDb

about 320
downloading 322

magic.db file 326
main() method 210

map() method, Set class
about 311
class argument 311
tmp argument 311

matches() method, Set class 309
match() implementation, custom route

classes 183
merge() method, Set class 311
mock assertions methods

expectAtLeastOnce() 300
expectNever() 300
expectOnce() 300

model bindings 39
model validation messages

internationalizing 258-262
multiple associations

defining, to same model 57-59
multiple validation rules

adding 94-97
MySQL datasource

locking support, adding 149-156
transaction commands 153
transaction support, adding 149-156
working 156

N
named and GET parameters

implementing 160-164
working 164

numeric() method, Set class 311

O
OpenAuth component 37
OpenID

about 34
integrating with 34, 35
URL 34
working 36

openid plugin 36
options() method 90

P
paginate() method 62, 88
Paginator 90

339

parameters, import command
limit 228
size 228
verbose 228

parameters, params property
app 229
root 229
webroot 229
working 229

params command settings
help 239
type 239
value 239

parse() implementation, custom route classes
184

password confirmation field
hashing 12

password() method 212
PHP OAuth library

about 139
URL 139

Poedit
about 265
downloading 265
URL 265

PostsController actions 212
PostsController class 186, 201, 208
PostsController::delete() method 202
PostsController::edit() method 201
PostsController::index() method 201
prefixes

using, for role-based access control 24, 26
printf() function 264
ProfilesController 94
ProfilesController class 155, 166
ProfilesController::index() method 177
properties, Email component

from 244
sendAs 244
subject 244
to 244

properties, fixtures
fields 289
import 288
model 289
name 288
records 288

table 288, 289
public properties, Email component

attachments 319
bcc 319
cc 319
from 318
headers 319
readReceipt 319
replyTo 318
return 319
subject 319
to 318

pushDiff() method, Set class 311

Q
queries

building, with ad-hoc JOINs 75-78
QueryLog component 127
query() method 158
query parameters

alt 196
orderby 196
q 196
v 196

R
readfile() function 325
read() method 148
records, matching search terms

searching for 78-80
redirect() method 299
renderException() method 331
RequestHandler component 190, 206
request() method 207, 210
requireLogin () method 211
resetBindings() method 49
REST services

authentication, adding 207-211
building, JSON used 197-206
working 206, 207

reusable shell tasks
creating 229-237
working 237-239

reverse() method, Set class 312
reverse routing

using 173

340

RIGHT JOIN, JOIN types 57
robot plugin

about 244
downloading 245
using 244-247
working 248, 249

RobotTask model 248
route elements

working with 171-173
Router class 180
Router::connect() method 172
Router::parseExtensions() method 190
routes

using, with prefixes 166-169
RSS feeds

content, retrieving from 135, 137
creating 186-190
view caching, adding 191, 192

RssHelper::item() method 190

S
schedule() method

about 248
arguments 248

schema() model function 73
search engine optimization 159
search() method 196
Security component 211, 212
Security::hash() method

about 223
arguments 223

send() method 320
setAutoCommit() method 158
Set class

about 304
combine() method 309
diff() method 312
extract() method 308
filter() method 311
format() method 310
index() method 306
map() method 311
matches() method 309
merge() method 311
numeric() method 311
pushDiff() method 311

reverse() method 312
sort() method 312
working with 303-305

setConfig() method 135
set_exception_handler() function 331
setFlash() method 300
setup() method 108
Shell class 222
Sluggable behavior

about 113
options 117
using 113-116
working 117

sort() method, Set class 312
sprintf() function 264
SQL datasource query log

improving 123-130
startCase() callback 290
startTest() callback 290
startup() function 243
String class

cleanInsert() method 313
insert() method 313
tokenize() method 313
using 312
uuid() method 313
working 313

string manipulation
about 312
String class, using 312

strings
interpolation arguments, reordering 264
interpolation arguments, reusing 264
translating, dynamic content used 262, 264

strtotime() function 217
SubscribersController class 246

T
table model property 135
TagsController::view() method 160
testAction() method 295, 300
TestArticlesController class 300
test case assertion methods

assertEqual() 290
assertFalse() 290
assertTrue() 290

341

expectException() 290
test data

creating 284-288
test framework

setting up 279-284
working 284

testGet() method 290
testRedirect property 299
test_suite database 290
testsuite shell 302
testView() method 295
testVote() method 290, 293
text, CakePHP applications

category, specifying 257
domain, specifying 257
internationalizing 252-257
internationalizing, translate() method used

257
translating 265-269

timeline() method 108
token-based authorization

implementing, for API access 212-215
nworking 217

tokenize() method, String class
about 313
data argument 313
leftBound argument 313
rightBound argument 313
separator argument 313

token() method 148
Translate behavior

using 269
translate() method 257
Tweet model

creating 139
TweetsController class 146
Twitter

URL 140
TwitterAccountBehavior class 109
Twitter datasource

building 139-147
working 147, 148

type setting 57

U
unbindModel() method 47
unit tests

running, from command line 301
working 302

unlock() method 157
UploadsController class 330
useDbConfig property 133
user details

saving, after login 19-21
UserFixture 289
userName element 177
UsersController class 217
UserShell class 222, 239
User::userToken() method 217
useToken() method 217
uuid() method, String class

about 313, 314
reference link 314

UUID (Universally Unique Identifier) 217

V
validatePost property 212
validate property 262
validateTwitter() method 100
Video::search() method 197
view() action 325
view() method 322
virtual fields

using 71-75
VoteFixture 289

W
web services

about 185
authentication, adding to REST services

 207-211
JSON service, consuming 192-195
REST services, building with JSON 197-206
RSS feed, creating 186-190
token-based authorization, implementing

212-215

342

welcome() method 247
writeBuffer() method 91
write() method 148

X
Xdebug

about 292
URL 292

Thank you for buying
CakePHP 1.3 Application Development

Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

CakePHP Application
Development
ISBN: 978-1-847193-89-6 Paperback: 332 pages

Step-by-step introduction to rapid web development
using the open-source MVC CakePHP framework

1.	 Develop cutting-edge Web 2.0 applications, and
write PHP code in a faster, more productive way

2.	 Walk through the creation of a complete CakePHP
Web application

3.	 Customize the look and feel of applications using
CakePHP layouts and views

4.	 Make interactive applications using CakePHP,
JavaScript, and AJAX helpers

AJAX and PHP: Building
Responsive Web Applications
ISBN: 978-1-904811-82-4 Paperback: 284 pages

Enhance the user experience of your PHP website using
AJAX with this practical tutorial featuring detailed case
studies

1.	 Build a solid foundation for your next generation
of web applications

2.	 Use better JavaScript code to enable powerful web
features

3.	 Leverage the power of PHP and MySQL to create
powerful back-end functionality and make it work
in harmony with the smart AJAX client

Please check www.PacktPub.com for information on our titles

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

CodeIgniter 1.7 Professional
Development
ISBN: 9781849510905 Paperback: 300 pages

Become a CodeIgniter expert with professional tools,
techniques and extended libraries

1.	 Learn expert CodeIgniter techniques and move
beyond the realms of the User Guide

2.	 Create mini-applications that teach you a
technique and allow you to easily build extras on
top of them

3.	 Create CodeIgniter Libraries to minimize code
bloat and allow for easy transitions across
multiple projects

4.	 A step-by-step, practical guide with examples and
screenshots

CodeIgniter 1.7
ISBN: 978-1-847199-48-5 Paperback: 300 pages

Improve your PHP coding productivity with the free
compact open-source MVC CodeIgniter framework!

1.	 Clear, structured tutorial on working with
CodeIgniter for rapid PHP application development

2.	 Careful explanation of the basic concepts of
CodeIgniter and its MVC architecture

3.	 Use CodeIgniter with databases, HTML forms,
files, images, sessions, and email

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Preface
	Chapter 1: Authentication
	Introduction
	Setting up a basic authentication system
	Using and configuring the Auth component
	Allowing logins with username or e-mail
	Saving the user details after login
	Getting the current user's information
	Using prefixes for role-based access control
	Setting up Access Control Layer-based
	authentication
	Integrating with OpenID

	Chapter 2: Model Bindings
	Introduction
	Adding Containable to all models
	Limiting the bindings returned in a find
	Modifying binding parameters for a find
	Modifying binding conditions for a find
	Changing the JOIN type of one-to-one
	associations
	Defining multiple associations to the
	same model
	Adding bindings on the fly

	Chapter 3: Pushing the Search
	Introduction
	Performing GROUP and COUNT queries
	Using virtual fields
	Building queries with ad-hoc JOINs
	Searching for all items that match
	search terms
	Implementing a custom find type
	Paginating a custom find type
	Implementing AJAX based pagination

	Chapter 4: Validation and Behaviors
	Introduction
	Adding multiple validation rules
	Creating a custom validation rule
	Using callbacks in behaviors
	Using behaviors to add new fields for saving
	Using the Sluggable behavior
	Geocoding addresses with the Geocodable
	behavior

	Chapter 5: Datasources
	Introduction
	Improving the SQL datasource query log
	Parsing CSV files with a datasource
	Consuming RSS feeds with a datasource
	Building a Twitter datasource
	Adding transaction and locking support
	to the MySQL datasource

	Chapter 6: Routing Magic
	Introduction
	Using named and GET parameters
	Using routes with prefixes
	Working with route elements
	Adding catch-all routes for profile pages
	Adding validation for catch-all routes
	Creating custom Route classes

	Chapter 7: Creating and Consuming Web Services
	Introduction
	Creating an RSS feed
	Consuming a JSON service
	Building REST services with JSON
	Adding authentication to REST services
	Implementing token-based authorization
	for API access

	Chapter 8: Working with Shells
	Introduction
	Building and running a shell
	Parsing command line parameters
	Creating reusable shell tasks
	Sending e-mails from shells
	Non-interactive tasks with the robot plugin

	Chapter 9: Internationalizing Applications
	Introduction
	Internationalizing controller and view texts
	Internationalizing model validation
	messages
	Translating strings with dynamic content
	Extracting and translating text
	Translating database records with the
	Translate behavior
	Setting and remembering the language

	Chapter 10: Testing
	Introduction
	Setting up the test framework
	Creating fixtures and testing model methods
	Testing controller actions and their views
	Using mocks to test controllers
	Running tests from the command line

	Chapter 11: Utility Classes and Tools
	Introduction
	Working with the Set class
	Manipulating strings with the String class
	Sending an e-mail
	Detecting file types with MagicDb
	Throwing and handling exceptions

	Index

